Files
caveman/cavemanml.py
2026-01-07 12:37:36 +01:00

211 lines
5.7 KiB
Python

import os
import sys
import random
import warnings
import librosa
import numpy as np
import torch.nn as nn
import torch
from caveman_wavedataset import WaveformDataset
from torch.utils.data import DataLoader
from torch.cuda.amp import autocast, GradScaler
import torch.optim.lr_scheduler as lr_scheduler
warnings.filterwarnings("ignore")
CLEAN_DATA_DIR = "./fma_small"
LOSSY_DATA_DIR = "./fma_small_compressed_64/"
SR = 44100 # sample rate
DURATION = 2.0 # seconds per clip
N_MELS = None # we'll use full STFT for now
HOP = 512
N_FFT = 1024
def audio_to_logmag(audio):
# STFT
stft = librosa.stft(audio, n_fft=N_FFT, hop_length=HOP)
mag = np.abs(stft)
logmag = np.log1p(mag) # log(1 + x) for stability
return logmag # shape: (freq_bins, time_frames) = (513, T)
class CavemanEnhancer(nn.Module):
def __init__(self, freq_bins=513):
super().__init__()
self.net = nn.Sequential(
nn.Conv2d(in_channels=1, out_channels=32, kernel_size=5, padding=2),
nn.ReLU(),
nn.Conv2d(32, 32, kernel_size=3, padding=1),
nn.ReLU(),
nn.Conv2d(32, 1, kernel_size=3, padding=1),
)
def forward(self, x):
# x: (batch, freq_bins)
return self.net(x)
BATCH_SIZE = 4
EPOCHS = 100
def main():
# Model
device = "cuda" if torch.cuda.is_available() else "cpu"
print(device)
ans = input("Do you want to use this device?")
if ans != "y":
exit(1)
model = CavemanEnhancer().to(device)
if len(sys.argv) > 1:
model.load_state_dict(
torch.load(sys.argv[1], weights_only=False)["model_state_dict"]
)
model.eval()
enhance_audio(
model,
"./examples/mirror_mirror/mirror_mirror_compressed_64.mp3",
"./examples/mirror_mirror/mirror_mirror_decompressed_64_mse.wav",
)
# Load
x, sr = librosa.load("./examples/mirror_mirror/mirror_mirror_compressed_64.mp3", sr=SR)
# Convert to log-mag
X = audio_to_logmag(x) # (513, T)
# Clip to valid range (log1p output ≥ 0)
Y_pred = np.maximum(X, 0)
# Invert log
mag_pred = np.expm1(Y_pred) # inverse of log1p
# Reconstruct with Griffin-Lim
y_reconstructed = librosa.griffinlim(
mag_pred, n_iter=30, hop_length=HOP, win_length=N_FFT, n_fft=N_FFT
)
import soundfile as sf
# Save
sf.write("./examples/mirror_mirror/mirror_mirror_compressed_64_STFT.mp3", y_reconstructed, sr)
return
# Data
dataset = WaveformDataset(LOSSY_DATA_DIR, CLEAN_DATA_DIR, sr=SR)
n_val = int(0.1 * len(dataset))
n_train = len(dataset) - n_val
train_indices = list(range(n_train))
val_indices = list(range(n_train, len(dataset)))
train_dataset = torch.utils.data.Subset(dataset, train_indices)
val_dataset = torch.utils.data.Subset(dataset, val_indices)
train_loader = DataLoader(
train_dataset,
batch_size=BATCH_SIZE,
shuffle=True,
pin_memory=True,
num_workers=16,
)
val_loader = DataLoader(
val_dataset,
batch_size=4,
shuffle=False,
num_workers=10,
pin_memory=True,
)
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
scheduler = lr_scheduler.ReduceLROnPlateau(
optimizer,
mode="min",
factor=0.1,
patience=5,
cooldown=3,
threshold=1e-3,
)
from tqdm import tqdm
criterion = nn.L1Loss()
# Train
for epoch in range(EPOCHS):
model.train()
for lossy, clean in tqdm(train_loader, desc="Training"):
lossy, clean = lossy.to(device), clean.to(device)
with autocast():
enhanced = model(lossy)
loss = criterion(clean, enhanced)
optimizer.zero_grad()
loss.backward()
optimizer.step()
model.eval()
total_loss = 0.0
val_loss = 0
with torch.no_grad():
for lossy, clean in tqdm(val_loader, desc="Validating"):
lossy, clean = lossy.to(device), clean.to(device)
output = model(lossy)
loss_ = criterion(output, clean)
total_loss += loss_.item()
val_loss = total_loss / len(train_loader)
scheduler.step(val_loss) # Update learning rate based on validation loss
if (epoch + 1) % 10 == 0:
lr = optimizer.param_groups[0]["lr"]
print(f"LR: {lr:.6f}")
print(f"Epoch {epoch + 1}, Loss: {loss.item():.4f}, Val: {val_loss:.4f}")
torch.save(
{
"epoch": epoch,
"model_state_dict": model.state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
"loss": loss,
},
f"checkpoint{epoch}.pth",
)
def enhance_audio(model, lossy_path, output_path):
# Load
x, sr = librosa.load(lossy_path, sr=SR)
# Convert to log-mag
X = audio_to_logmag(x) # (513, T)
device = "cuda" if torch.cuda.is_available() else "cpu"
X_tensor = torch.tensor(X, dtype=torch.float32).unsqueeze(0).to(device) # (T, 513)
with torch.no_grad():
Y_pred = model(X_tensor).cpu().numpy() # (1, T, 513)
Y_pred = Y_pred.squeeze(0) # back to (T, 513)
# Clip to valid range (log1p output ≥ 0)
Y_pred = np.maximum(Y_pred, 0)
# Invert log
mag_pred = np.expm1(Y_pred) # inverse of log1p
# Reconstruct with Griffin-Lim
y_reconstructed = librosa.griffinlim(
mag_pred, n_iter=30, hop_length=HOP, win_length=N_FFT, n_fft=N_FFT
)
import soundfile as sf
# Save
sf.write(output_path, y_reconstructed, sr)
if __name__ == "__main__":
main()