364 lines
10 KiB
Python
364 lines
10 KiB
Python
import sys
|
|
import warnings
|
|
import librosa
|
|
import numpy as np
|
|
import torch.nn as nn
|
|
import torch
|
|
import soundfile as sf
|
|
from caveman_wavedataset import WaveformDataset
|
|
from torch.utils.data import DataLoader
|
|
from torch.cuda.amp import autocast
|
|
import torch.optim.lr_scheduler as lr_scheduler
|
|
from tqdm import tqdm
|
|
from misc import audio_to_logmag
|
|
from settings import N_FFT, HOP, SR
|
|
from model import CavemanEnhancer
|
|
|
|
warnings.filterwarnings("ignore")
|
|
|
|
CLEAN_DATA_DIR = "./fma_small"
|
|
LOSSY_DATA_DIR = "./fma_small_compressed_64/"
|
|
|
|
# Duration is the duration of each example to be selected from the dataset.
|
|
# Since we are using the FMA dataset, it's max value is 30s.
|
|
# From the standpoint of the model and training,
|
|
# it should make absolutely no difference on quality,
|
|
# only on the speed of the training process. If duration is larger,
|
|
# model is going to be trained on more data per example.
|
|
# If smaller, less data per example.
|
|
#
|
|
# YOU ONLY NEED TO CHANGE THIS IS IF YOU ARE CPU-BOUND WHEN
|
|
# LOADING THE DATA DURING TRAINING. INCREASE TO PLACE MORE LOAD
|
|
# ON THE GPU, REDUCE TO PUT MORE LOAD ON THE CPU. DO NOT ADJUST
|
|
# THE BATCH SIZE, IT WILL MAKE NO DIFFERENCE, SINCE WE ARE ALWAYS
|
|
# FORCED TO LOAD THE ENTIRE EXAMPLE FROM DISK EVERY SINGLE TIME.
|
|
DURATION = 2
|
|
BATCH_SIZE = 4
|
|
# 100 is a bit ridicilous, but you are free to Ctrl-C anytime, since the checkpoints are always saved.
|
|
EPOCHS = 100
|
|
PREFETCH = 4
|
|
|
|
# stats = torch.load("freq_stats.pth")
|
|
# freq_mean = stats["mean"].numpy() # (513,)
|
|
# freq_std = stats["std"].numpy() # (513,)
|
|
|
|
freq_mean = np.zeros([N_FFT // 2 + 1])
|
|
# (513,)
|
|
freq_std = np.ones([N_FFT // 2 + 1]) # (513,)
|
|
|
|
|
|
# freq_mean_torch = stats["mean"] # (513,)
|
|
# freq_std_torch = stats["std"] # (513,)
|
|
freq_mean_torch = torch.from_numpy(freq_mean)
|
|
freq_std_torch = torch.from_numpy(freq_std)
|
|
|
|
|
|
def run_example(model_filename, device):
|
|
model = CavemanEnhancer().to(device)
|
|
model.load_state_dict(
|
|
torch.load(model_filename, weights_only=False)["model_state_dict"]
|
|
)
|
|
|
|
model.eval()
|
|
enhance_mono(
|
|
model,
|
|
"./examples/mirror_mirror/mirror_mirror_compressed_64.mp3",
|
|
"./examples/mirror_mirror/mirror_mirror_decompressed_64.wav",
|
|
)
|
|
|
|
# Load
|
|
x, sr = librosa.load(
|
|
"./examples/mirror_mirror/mirror_mirror.mp3",
|
|
sr=SR,
|
|
)
|
|
|
|
# Convert to log-mag
|
|
X = audio_to_logmag(x) # (513, T)
|
|
|
|
Y_pred = normalize(X)
|
|
Y_pred = denorm(Y_pred)
|
|
|
|
# Clip to valid range (log1p output ≥ 0)
|
|
Y_pred = np.maximum(X, 0)
|
|
|
|
stft = librosa.stft(x, n_fft=N_FFT, hop_length=HOP)
|
|
# Invert log
|
|
mag_pred = np.expm1(Y_pred) # inverse of log1p
|
|
phase_lossy = np.angle(stft)
|
|
|
|
# Reconstruct with Griffin-Lim
|
|
# y_reconstructed = librosa.griffinlim(
|
|
# mag_pred, n_iter=30, hop_length=HOP, win_length=N_FFT, n_fft=N_FFT
|
|
# )
|
|
|
|
# Combine: enhanced mag + original phase
|
|
stft_enhanced = mag_pred * np.exp(1j * phase_lossy)
|
|
y_reconstructed = librosa.istft(stft_enhanced, n_fft=N_FFT, hop_length=HOP)
|
|
|
|
time = np.minimum(x.shape[0], y_reconstructed.shape[0])
|
|
|
|
print(
|
|
f"Loss from reconstruction: {nn.MSELoss()(torch.from_numpy(x[:time]), torch.from_numpy(y_reconstructed[:time]))}"
|
|
)
|
|
|
|
# Save
|
|
sf.write(
|
|
"./examples/mirror_mirror/mirror_mirror_STFT.mp3",
|
|
y_reconstructed,
|
|
sr,
|
|
)
|
|
|
|
show_spectrogram(
|
|
"./examples/mirror_mirror/mirror_mirror_STFT.mp3",
|
|
"./examples/mirror_mirror/mirror_mirror_compressed_64.mp3",
|
|
"./examples/mirror_mirror/mirror_mirror_decompressed_64.wav",
|
|
)
|
|
|
|
return
|
|
|
|
|
|
def main():
|
|
# Model
|
|
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
print(device)
|
|
ans = input("Do you want to use this device?")
|
|
if ans != "y":
|
|
exit(1)
|
|
|
|
if len(sys.argv) > 1:
|
|
run_example(sys.argv[1], device)
|
|
exit(0)
|
|
|
|
# Data
|
|
dataset = WaveformDataset(LOSSY_DATA_DIR, CLEAN_DATA_DIR, DURATION, sr=SR)
|
|
dataset.mean = freq_mean
|
|
dataset.std = freq_std
|
|
|
|
# separate the test and val data
|
|
n_val = int(0.1 * len(dataset))
|
|
n_train = len(dataset) - n_val
|
|
|
|
train_indices = list(range(n_train))
|
|
val_indices = list(range(n_train, len(dataset)))
|
|
|
|
train_dataset = torch.utils.data.Subset(dataset, train_indices)
|
|
val_dataset = torch.utils.data.Subset(dataset, val_indices)
|
|
|
|
train_loader = DataLoader(
|
|
train_dataset,
|
|
batch_size=BATCH_SIZE,
|
|
prefetch_factor=PREFETCH,
|
|
shuffle=True,
|
|
pin_memory=True,
|
|
num_workers=16,
|
|
)
|
|
val_loader = DataLoader(
|
|
val_dataset,
|
|
batch_size=BATCH_SIZE,
|
|
prefetch_factor=PREFETCH,
|
|
shuffle=False,
|
|
num_workers=16,
|
|
pin_memory=True,
|
|
)
|
|
|
|
# model
|
|
model = CavemanEnhancer().to(device)
|
|
|
|
optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)
|
|
|
|
# I am actually not sure it really improves anything, but there is little reason not to keep this, I guess.
|
|
scheduler = lr_scheduler.ReduceLROnPlateau(
|
|
optimizer,
|
|
mode="min",
|
|
factor=0.1,
|
|
patience=3,
|
|
# cooldown=3,
|
|
# threshold=1e-3,
|
|
)
|
|
|
|
# Weight: emphasize high frequencies
|
|
weight = torch.linspace(1.0, 8.0, 513).to(device) # low=1x, high=8x
|
|
weight = torch.exp(weight)
|
|
weight = weight.view(1, 513, 1)
|
|
|
|
def weighted_l1_loss(pred, target):
|
|
return torch.mean(weight * torch.abs(pred - target))
|
|
|
|
# criterion = nn.L1Loss()
|
|
criterion = weighted_l1_loss
|
|
# criterion = nn.MSELoss()
|
|
|
|
# baseline (doing nothing)
|
|
# if True:
|
|
# loss = 0.0
|
|
# for lossy, clean in tqdm(train_loader, desc="Baseline"):
|
|
# loss += criterion(clean, lossy)
|
|
# loss /= len(train_loader)
|
|
# print(f"baseling loss: {loss:.4f}")
|
|
|
|
# Train
|
|
for epoch in range(EPOCHS):
|
|
model.train()
|
|
train_loss = 0.0
|
|
for lossy, clean in tqdm(train_loader, desc="Training"):
|
|
lossy, clean = lossy.to(device), clean.to(device)
|
|
|
|
with autocast():
|
|
enhanced = model(lossy)
|
|
loss = criterion(clean, enhanced)
|
|
train_loss += loss
|
|
|
|
optimizer.zero_grad()
|
|
loss.backward()
|
|
optimizer.step()
|
|
|
|
train_loss /= len(train_loader)
|
|
|
|
# Validate (per epoch)
|
|
model.eval()
|
|
total_loss = 0.0
|
|
val_loss = 0
|
|
with torch.no_grad():
|
|
for lossy, clean in tqdm(val_loader, desc="Validating"):
|
|
lossy, clean = lossy.to(device), clean.to(device)
|
|
output = model(lossy)
|
|
loss_ = criterion(output, clean)
|
|
|
|
total_loss += loss_.item()
|
|
val_loss = total_loss / len(train_loader)
|
|
|
|
scheduler.step(val_loss) # Update learning rate based on validation loss
|
|
|
|
lr = optimizer.param_groups[0]["lr"]
|
|
print(f"LR: {lr:.6f}")
|
|
print(f"Epoch {epoch + 1}, Loss: {train_loss:.4f}, Val: {val_loss:.4f}")
|
|
|
|
# Yes, we are saving checkpoints for every epoch. The model is small, and disk space cheap.
|
|
torch.save(
|
|
{
|
|
"epoch": epoch,
|
|
"model_state_dict": model.state_dict(),
|
|
"optimizer_state_dict": optimizer.state_dict(),
|
|
"loss": loss,
|
|
},
|
|
f"checkpoint{epoch}.pth",
|
|
)
|
|
|
|
|
|
def file_to_logmag(path):
|
|
y, sr = librosa.load(path, sr=SR, mono=True)
|
|
print(y.shape)
|
|
return np.squeeze(audio_to_logmag(y))
|
|
|
|
|
|
def show_spectrogram(path1, path2, path3):
|
|
spectrogram1 = file_to_logmag(path1)
|
|
spectrogram2 = file_to_logmag(path2)
|
|
spectrogram3 = file_to_logmag(path3)
|
|
|
|
spectrogram1 = normalize(spectrogram1)
|
|
spectrogram2 = normalize(spectrogram2)
|
|
spectrogram3 = normalize(spectrogram3)
|
|
|
|
from matplotlib import pyplot as plt
|
|
|
|
# Create a figure with two subplots (1 row, 2 columns)
|
|
fig, axes = plt.subplots(1, 3, figsize=(10, 5))
|
|
|
|
# Display the first image
|
|
axes[0].imshow(spectrogram1, aspect="auto", cmap="gray")
|
|
axes[0].set_title("spectrogram 1")
|
|
axes[0].axis("off") # Hide axes
|
|
|
|
# Display the second image
|
|
axes[1].imshow(spectrogram2, aspect="auto", cmap="gray")
|
|
axes[1].set_title("spectrogram 2")
|
|
axes[1].axis("off")
|
|
|
|
# Display the second image
|
|
axes[2].imshow(spectrogram3, aspect="auto", cmap="gray")
|
|
axes[2].set_title("spectrogram 3")
|
|
axes[2].axis("off")
|
|
|
|
plt.tight_layout()
|
|
plt.show()
|
|
|
|
|
|
def enhance_stereo(model, lossy_path, output_path):
|
|
# Load stereo audio (returns shape: (2, T) if stereo)
|
|
y, sr = librosa.load(lossy_path, sr=SR, mono=False) # mono=False preserves channels
|
|
|
|
# Ensure shape is (2, T)
|
|
if y.ndim == 1:
|
|
raise ValueError("Input is mono! Expected stereo.")
|
|
|
|
y_l = y[0]
|
|
y_r = y[1]
|
|
|
|
y_enhanced_l = enhance_audio(model, y_l, sr)
|
|
y_enhanced_r = enhance_audio(model, y_r, sr)
|
|
|
|
stereo_reconstructed = np.vstack((y_enhanced_l, y_enhanced_r))
|
|
|
|
import soundfile as sf
|
|
|
|
# Save (soundfile handles (2, T) -> stereo correctly)
|
|
sf.write(output_path, stereo_reconstructed.T, sr) # Note: .T to (T, 2) if required
|
|
|
|
|
|
# accepts shape (513, T)!!!!
|
|
def denorm_torch(spectrogram):
|
|
return spectrogram * (freq_std_torch[:, None] + 1e-8) + freq_mean_torch[:, None]
|
|
|
|
|
|
# accepts shape (513, T)!!!!
|
|
def normalize(spectrogram):
|
|
return (spectrogram - freq_mean[:, None]) / (freq_std[:, None] + 1e-8)
|
|
|
|
|
|
# accepts shape (513, T)!!!!
|
|
def denorm(spectrogram):
|
|
return spectrogram * (freq_std[:, None] + 1e-8) + freq_mean[:, None]
|
|
|
|
|
|
def enhance_audio(model, audio, sr):
|
|
# Convert to log-mag
|
|
X = audio_to_logmag(audio) # (513, T)
|
|
stft = librosa.stft(audio, n_fft=N_FFT, hop_length=HOP)
|
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
X_tensor = torch.tensor(X, dtype=torch.float32).unsqueeze(0).to(device) # (T, 513)
|
|
with torch.no_grad():
|
|
Y_pred = model(X_tensor).cpu().numpy() # (1, T, 513)
|
|
Y_pred = Y_pred.squeeze(0) # back to (T, 513)
|
|
|
|
Y_pred = denorm(Y_pred)
|
|
|
|
# Clip to valid range (log1p output ≥ 0)
|
|
Y_pred = np.maximum(Y_pred, 0)
|
|
|
|
# Invert log
|
|
mag_pred = np.expm1(Y_pred) # inverse of log1p
|
|
phase_lossy = np.angle(stft)
|
|
|
|
# Combine: enhanced mag + original phase
|
|
stft_enhanced = mag_pred * np.exp(1j * phase_lossy)
|
|
y_reconstructed = librosa.istft(stft_enhanced, n_fft=N_FFT, hop_length=HOP)
|
|
return y_reconstructed
|
|
|
|
|
|
def enhance_mono(model, lossy_path, output_path):
|
|
# Load
|
|
x, sr = librosa.load(lossy_path, sr=SR)
|
|
|
|
y_reconstructed = enhance_audio(model, x, sr)
|
|
|
|
import soundfile as sf
|
|
|
|
# Save
|
|
sf.write(output_path, y_reconstructed, sr)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|