Files
caveman/caveman_wavedataset.py
2026-01-10 20:35:21 +01:00

74 lines
2.4 KiB
Python

import os
import torch
import librosa
from torch.utils.data import Dataset
import numpy as np
import random
from settings import SR, N_FFT
from misc import audio_to_logmag
class WaveformDataset(Dataset):
mean = np.zeros([N_FFT // 2 + 1])
std = np.ones([N_FFT // 2 + 1])
# Duration is a very very important parameter, read the cavemanml.py to see how and why adjust it!!!
# For the purposes of this file, it's the length of the audio clip being selected from the dataset.
def __init__(self, lossy_dir, clean_dir, segment_duration, sr=SR):
self.segment_duration = segment_duration
self.sr = sr
self.lossy_dir = lossy_dir
self.clean_dir = clean_dir
self.lossy_files = sorted(os.listdir(lossy_dir))
self.clean_files = sorted(os.listdir(clean_dir))
self.file_pairs = [
(f, f) for f in self.lossy_files if f in set(self.clean_files)
]
def __len__(self):
return len(self.file_pairs)
def __getitem__(self, idx):
if idx in self.cache:
return self.cache[idx]
lossy_path = os.path.join(self.lossy_dir, self.lossy_files[idx])
clean_path = os.path.join(self.clean_dir, self.clean_files[idx])
# Load
lossy, _ = librosa.load(lossy_path, sr=self.sr, mono=True)
clean, _ = librosa.load(clean_path, sr=self.sr, mono=True)
# Match length
min_len = min(len(lossy), len(clean))
lossy, clean = lossy[:min_len], clean[:min_len]
# Random clip
clip_len = int(self.segment_duration * SR)
if min_len < clip_len:
# pad if too short
lossy = np.pad(lossy, (0, clip_len - min_len))
clean = np.pad(clean, (0, clip_len - min_len))
start = 0
else:
start = random.randint(0, min_len - clip_len)
# start = 0
lossy = lossy[start : start + clip_len]
clean = clean[start : start + clip_len]
logmag_x = audio_to_logmag(lossy)
logmag_y = audio_to_logmag(clean)
logmag_x_norm = (logmag_x - self.mean[:, None]) / (self.std[:, None] + 1e-8)
logmag_y_norm = (logmag_y - self.mean[:, None]) / (self.std[:, None] + 1e-8)
ans = (
torch.from_numpy(logmag_x_norm).float().unsqueeze(0),
torch.from_numpy(logmag_y_norm).float().unsqueeze(0),
)
# self.cache[idx] = ans
return ans