import shadowtube.preprocess as prep import shadowtube.recommend as rec raw_history = prep.parse_database("./short.db") # print(raw_history[0]["title"] + ": " + str(prep.relevancy(raw_history[0], raw_history))) # print( # raw_history[28]["title"] + ": " + str(prep.relevancy(raw_history[28], raw_history)) # ) # for i in range(0, 10): # print(prep.get_similarity(raw_history[i], raw_history)) history = prep.sort_history(raw_history) print(len(history)) # print(recommend(history)) recommendations = rec.recommend(history, verbose=False) print(recommendations)