import os import torch import librosa from torch.utils.data import Dataset import numpy as np import random HOP = 512 N_FFT = 1024 DURATION = 2.0 SR = 44100 def audio_to_logmag(audio): # STFT stft = librosa.stft(audio, n_fft=N_FFT, hop_length=HOP) mag = np.abs(stft) logmag = np.log1p(mag) # log(1 + x) for stability return logmag # shape: (1, freq_bins, time_frames) = (1, 513, T) class WaveformDataset(Dataset): def __init__(self, lossy_dir, clean_dir, sr=SR, segment_sec=4): self.cache = dict() self.sr = sr self.lossy_dir = lossy_dir self.clean_dir = clean_dir self.segment_len = int(segment_sec * sr) self.lossy_files = sorted(os.listdir(lossy_dir)) self.clean_files = sorted(os.listdir(clean_dir)) self.file_pairs = [ (f, f) for f in self.lossy_files if f in set(self.clean_files) ] def __len__(self): return len(self.file_pairs) def __getitem__(self, idx): if idx in self.cache: return self.cache[idx] lossy_path = os.path.join(self.lossy_dir, self.lossy_files[idx]) clean_path = os.path.join(self.clean_dir, self.clean_files[idx]) # Load lossy, _ = librosa.load(lossy_path, sr=self.sr, mono=True) clean, _ = librosa.load(clean_path, sr=self.sr, mono=True) # Match length min_len = min(len(lossy), len(clean)) lossy, clean = lossy[:min_len], clean[:min_len] # Random 2-second clip clip_len = int(DURATION * SR) if min_len < clip_len: # pad if too short lossy = np.pad(lossy, (0, clip_len - min_len)) clean = np.pad(clean, (0, clip_len - min_len)) start = 0 else: start = random.randint(0, min_len - clip_len) lossy = lossy[start : start + clip_len] clean = clean[start : start + clip_len] ans = ( torch.from_numpy(audio_to_logmag(lossy)).unsqueeze(0), torch.from_numpy(audio_to_logmag(clean)).unsqueeze(0), ) self.cache[idx] = ans return ans