added new fixed code
This commit is contained in:
329
cavemanml.py
329
cavemanml.py
@@ -1,53 +1,120 @@
|
||||
import os
|
||||
import sys
|
||||
import random
|
||||
import warnings
|
||||
import librosa
|
||||
import numpy as np
|
||||
import torch.nn as nn
|
||||
import torch
|
||||
import soundfile as sf
|
||||
from caveman_wavedataset import WaveformDataset
|
||||
from torch.utils.data import DataLoader
|
||||
from torch.cuda.amp import autocast, GradScaler
|
||||
from torch.cuda.amp import autocast
|
||||
import torch.optim.lr_scheduler as lr_scheduler
|
||||
from tqdm import tqdm
|
||||
from misc import audio_to_logmag
|
||||
from settings import N_FFT, HOP, SR
|
||||
from model import CavemanEnhancer
|
||||
|
||||
warnings.filterwarnings("ignore")
|
||||
|
||||
CLEAN_DATA_DIR = "./fma_small"
|
||||
LOSSY_DATA_DIR = "./fma_small_compressed_64/"
|
||||
SR = 44100 # sample rate
|
||||
DURATION = 2.0 # seconds per clip
|
||||
N_MELS = None # we'll use full STFT for now
|
||||
HOP = 512
|
||||
N_FFT = 1024
|
||||
|
||||
|
||||
def audio_to_logmag(audio):
|
||||
# STFT
|
||||
stft = librosa.stft(audio, n_fft=N_FFT, hop_length=HOP)
|
||||
mag = np.abs(stft)
|
||||
logmag = np.log1p(mag) # log(1 + x) for stability
|
||||
return logmag # shape: (freq_bins, time_frames) = (513, T)
|
||||
|
||||
|
||||
class CavemanEnhancer(nn.Module):
|
||||
def __init__(self, freq_bins=513):
|
||||
super().__init__()
|
||||
self.net = nn.Sequential(
|
||||
nn.Conv2d(in_channels=1, out_channels=32, kernel_size=5, padding=2),
|
||||
nn.ReLU(),
|
||||
nn.Conv2d(32, 32, kernel_size=3, padding=1),
|
||||
nn.ReLU(),
|
||||
nn.Conv2d(32, 1, kernel_size=3, padding=1),
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
# x: (batch, freq_bins)
|
||||
return self.net(x)
|
||||
|
||||
|
||||
# Duration is the duration of each example to be selected from the dataset.
|
||||
# Since we are using the FMA dataset, it's max value is 30s.
|
||||
# From the standpoint of the model and training,
|
||||
# it should make absolutely no difference on quality,
|
||||
# only on the speed of the training process. If duration is larger,
|
||||
# model is going to be trained on more data per example.
|
||||
# If smaller, less data per example.
|
||||
#
|
||||
# YOU ONLY NEED TO CHANGE THIS IS IF YOU ARE CPU-BOUND WHEN
|
||||
# LOADING THE DATA DURING TRAINING. INCREASE TO PLACE MORE LOAD
|
||||
# ON THE GPU, REDUCE TO PUT MORE LOAD ON THE CPU. DO NOT ADJUST
|
||||
# THE BATCH SIZE, IT WILL MAKE NO DIFFERENCE, SINCE WE ARE ALWAYS
|
||||
# FORCED TO LOAD THE ENTIRE EXAMPLE FROM DISK EVERY SINGLE TIME.
|
||||
DURATION = 2
|
||||
BATCH_SIZE = 4
|
||||
# 100 is a bit ridicilous, but you are free to Ctrl-C anytime, since the checkpoints are always saved.
|
||||
EPOCHS = 100
|
||||
PREFETCH = 4
|
||||
|
||||
# stats = torch.load("freq_stats.pth")
|
||||
# freq_mean = stats["mean"].numpy() # (513,)
|
||||
# freq_std = stats["std"].numpy() # (513,)
|
||||
|
||||
freq_mean = np.zeros([N_FFT // 2 + 1])
|
||||
# (513,)
|
||||
freq_std = np.ones([N_FFT // 2 + 1]) # (513,)
|
||||
|
||||
|
||||
# freq_mean_torch = stats["mean"] # (513,)
|
||||
# freq_std_torch = stats["std"] # (513,)
|
||||
freq_mean_torch = torch.from_numpy(freq_mean)
|
||||
freq_std_torch = torch.from_numpy(freq_std)
|
||||
|
||||
|
||||
def run_example(model_filename, device):
|
||||
model = CavemanEnhancer().to(device)
|
||||
model.load_state_dict(
|
||||
torch.load(model_filename, weights_only=False)["model_state_dict"]
|
||||
)
|
||||
|
||||
model.eval()
|
||||
enhance_mono(
|
||||
model,
|
||||
"./examples/mirror_mirror/mirror_mirror_compressed_64.mp3",
|
||||
"./examples/mirror_mirror/mirror_mirror_decompressed_64.wav",
|
||||
)
|
||||
|
||||
# Load
|
||||
x, sr = librosa.load(
|
||||
"./examples/mirror_mirror/mirror_mirror.mp3",
|
||||
sr=SR,
|
||||
)
|
||||
|
||||
# Convert to log-mag
|
||||
X = audio_to_logmag(x) # (513, T)
|
||||
|
||||
Y_pred = normalize(X)
|
||||
Y_pred = denorm(Y_pred)
|
||||
|
||||
# Clip to valid range (log1p output ≥ 0)
|
||||
Y_pred = np.maximum(X, 0)
|
||||
|
||||
stft = librosa.stft(x, n_fft=N_FFT, hop_length=HOP)
|
||||
# Invert log
|
||||
mag_pred = np.expm1(Y_pred) # inverse of log1p
|
||||
phase_lossy = np.angle(stft)
|
||||
|
||||
# Reconstruct with Griffin-Lim
|
||||
# y_reconstructed = librosa.griffinlim(
|
||||
# mag_pred, n_iter=30, hop_length=HOP, win_length=N_FFT, n_fft=N_FFT
|
||||
# )
|
||||
|
||||
# Combine: enhanced mag + original phase
|
||||
stft_enhanced = mag_pred * np.exp(1j * phase_lossy)
|
||||
y_reconstructed = librosa.istft(stft_enhanced, n_fft=N_FFT, hop_length=HOP)
|
||||
|
||||
time = np.minimum(x.shape[0], y_reconstructed.shape[0])
|
||||
|
||||
print(
|
||||
f"Loss from reconstruction: {nn.MSELoss()(torch.from_numpy(x[:time]), torch.from_numpy(y_reconstructed[:time]))}"
|
||||
)
|
||||
|
||||
# Save
|
||||
sf.write(
|
||||
"./examples/mirror_mirror/mirror_mirror_STFT.mp3",
|
||||
y_reconstructed,
|
||||
sr,
|
||||
)
|
||||
|
||||
show_spectrogram(
|
||||
"./examples/mirror_mirror/mirror_mirror_STFT.mp3",
|
||||
"./examples/mirror_mirror/mirror_mirror_compressed_64.mp3",
|
||||
"./examples/mirror_mirror/mirror_mirror_decompressed_64.wav",
|
||||
)
|
||||
|
||||
return
|
||||
|
||||
|
||||
def main():
|
||||
@@ -58,94 +125,96 @@ def main():
|
||||
if ans != "y":
|
||||
exit(1)
|
||||
|
||||
model = CavemanEnhancer().to(device)
|
||||
if len(sys.argv) > 1:
|
||||
model.load_state_dict(
|
||||
torch.load(sys.argv[1], weights_only=False)["model_state_dict"]
|
||||
)
|
||||
model.eval()
|
||||
enhance_audio(
|
||||
model,
|
||||
"./examples/mirror_mirror/mirror_mirror_compressed_64.mp3",
|
||||
"./examples/mirror_mirror/mirror_mirror_decompressed_64_mse.wav",
|
||||
)
|
||||
|
||||
# Load
|
||||
x, sr = librosa.load("./examples/mirror_mirror/mirror_mirror_compressed_64.mp3", sr=SR)
|
||||
|
||||
# Convert to log-mag
|
||||
X = audio_to_logmag(x) # (513, T)
|
||||
|
||||
# Clip to valid range (log1p output ≥ 0)
|
||||
Y_pred = np.maximum(X, 0)
|
||||
|
||||
# Invert log
|
||||
mag_pred = np.expm1(Y_pred) # inverse of log1p
|
||||
|
||||
# Reconstruct with Griffin-Lim
|
||||
y_reconstructed = librosa.griffinlim(
|
||||
mag_pred, n_iter=30, hop_length=HOP, win_length=N_FFT, n_fft=N_FFT
|
||||
)
|
||||
|
||||
import soundfile as sf
|
||||
|
||||
# Save
|
||||
sf.write("./examples/mirror_mirror/mirror_mirror_compressed_64_STFT.mp3", y_reconstructed, sr)
|
||||
return
|
||||
run_example(sys.argv[1], device)
|
||||
exit(0)
|
||||
|
||||
# Data
|
||||
dataset = WaveformDataset(LOSSY_DATA_DIR, CLEAN_DATA_DIR, sr=SR)
|
||||
dataset = WaveformDataset(LOSSY_DATA_DIR, CLEAN_DATA_DIR, DURATION, sr=SR)
|
||||
dataset.mean = freq_mean
|
||||
dataset.std = freq_std
|
||||
|
||||
# separate the test and val data
|
||||
n_val = int(0.1 * len(dataset))
|
||||
n_train = len(dataset) - n_val
|
||||
|
||||
train_indices = list(range(n_train))
|
||||
val_indices = list(range(n_train, len(dataset)))
|
||||
|
||||
train_dataset = torch.utils.data.Subset(dataset, train_indices)
|
||||
val_dataset = torch.utils.data.Subset(dataset, val_indices)
|
||||
|
||||
train_loader = DataLoader(
|
||||
train_dataset,
|
||||
batch_size=BATCH_SIZE,
|
||||
prefetch_factor=PREFETCH,
|
||||
shuffle=True,
|
||||
pin_memory=True,
|
||||
num_workers=16,
|
||||
)
|
||||
val_loader = DataLoader(
|
||||
val_dataset,
|
||||
batch_size=4,
|
||||
batch_size=BATCH_SIZE,
|
||||
prefetch_factor=PREFETCH,
|
||||
shuffle=False,
|
||||
num_workers=10,
|
||||
num_workers=16,
|
||||
pin_memory=True,
|
||||
)
|
||||
|
||||
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
|
||||
# model
|
||||
model = CavemanEnhancer().to(device)
|
||||
|
||||
optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)
|
||||
|
||||
# I am actually not sure it really improves anything, but there is little reason not to keep this, I guess.
|
||||
scheduler = lr_scheduler.ReduceLROnPlateau(
|
||||
optimizer,
|
||||
mode="min",
|
||||
factor=0.1,
|
||||
patience=5,
|
||||
cooldown=3,
|
||||
threshold=1e-3,
|
||||
patience=3,
|
||||
# cooldown=3,
|
||||
# threshold=1e-3,
|
||||
)
|
||||
|
||||
from tqdm import tqdm
|
||||
# Weight: emphasize high frequencies
|
||||
weight = torch.linspace(1.0, 8.0, 513).to(device) # low=1x, high=8x
|
||||
weight = torch.exp(weight)
|
||||
weight = weight.view(1, 513, 1)
|
||||
|
||||
criterion = nn.L1Loss()
|
||||
def weighted_l1_loss(pred, target):
|
||||
return torch.mean(weight * torch.abs(pred - target))
|
||||
|
||||
# criterion = nn.L1Loss()
|
||||
criterion = weighted_l1_loss
|
||||
# criterion = nn.MSELoss()
|
||||
|
||||
# baseline (doing nothing)
|
||||
# if True:
|
||||
# loss = 0.0
|
||||
# for lossy, clean in tqdm(train_loader, desc="Baseline"):
|
||||
# loss += criterion(clean, lossy)
|
||||
# loss /= len(train_loader)
|
||||
# print(f"baseling loss: {loss:.4f}")
|
||||
|
||||
# Train
|
||||
for epoch in range(EPOCHS):
|
||||
model.train()
|
||||
train_loss = 0.0
|
||||
for lossy, clean in tqdm(train_loader, desc="Training"):
|
||||
lossy, clean = lossy.to(device), clean.to(device)
|
||||
|
||||
with autocast():
|
||||
enhanced = model(lossy)
|
||||
loss = criterion(clean, enhanced)
|
||||
train_loss += loss
|
||||
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
train_loss /= len(train_loader)
|
||||
|
||||
# Validate (per epoch)
|
||||
model.eval()
|
||||
total_loss = 0.0
|
||||
val_loss = 0
|
||||
@@ -154,17 +223,17 @@ def main():
|
||||
lossy, clean = lossy.to(device), clean.to(device)
|
||||
output = model(lossy)
|
||||
loss_ = criterion(output, clean)
|
||||
|
||||
total_loss += loss_.item()
|
||||
val_loss = total_loss / len(train_loader)
|
||||
|
||||
scheduler.step(val_loss) # Update learning rate based on validation loss
|
||||
|
||||
if (epoch + 1) % 10 == 0:
|
||||
lr = optimizer.param_groups[0]["lr"]
|
||||
print(f"LR: {lr:.6f}")
|
||||
|
||||
print(f"Epoch {epoch + 1}, Loss: {loss.item():.4f}, Val: {val_loss:.4f}")
|
||||
lr = optimizer.param_groups[0]["lr"]
|
||||
print(f"LR: {lr:.6f}")
|
||||
print(f"Epoch {epoch + 1}, Loss: {train_loss:.4f}, Val: {val_loss:.4f}")
|
||||
|
||||
# Yes, we are saving checkpoints for every epoch. The model is small, and disk space cheap.
|
||||
torch.save(
|
||||
{
|
||||
"epoch": epoch,
|
||||
@@ -176,12 +245,86 @@ def main():
|
||||
)
|
||||
|
||||
|
||||
def enhance_audio(model, lossy_path, output_path):
|
||||
# Load
|
||||
x, sr = librosa.load(lossy_path, sr=SR)
|
||||
def file_to_logmag(path):
|
||||
y, sr = librosa.load(path, sr=SR, mono=True)
|
||||
print(y.shape)
|
||||
return np.squeeze(audio_to_logmag(y))
|
||||
|
||||
|
||||
def show_spectrogram(path1, path2, path3):
|
||||
spectrogram1 = file_to_logmag(path1)
|
||||
spectrogram2 = file_to_logmag(path2)
|
||||
spectrogram3 = file_to_logmag(path3)
|
||||
|
||||
spectrogram1 = normalize(spectrogram1)
|
||||
spectrogram2 = normalize(spectrogram2)
|
||||
spectrogram3 = normalize(spectrogram3)
|
||||
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
# Create a figure with two subplots (1 row, 2 columns)
|
||||
fig, axes = plt.subplots(1, 3, figsize=(10, 5))
|
||||
|
||||
# Display the first image
|
||||
axes[0].imshow(spectrogram1, aspect="auto", cmap="gray")
|
||||
axes[0].set_title("spectrogram 1")
|
||||
axes[0].axis("off") # Hide axes
|
||||
|
||||
# Display the second image
|
||||
axes[1].imshow(spectrogram2, aspect="auto", cmap="gray")
|
||||
axes[1].set_title("spectrogram 2")
|
||||
axes[1].axis("off")
|
||||
|
||||
# Display the second image
|
||||
axes[2].imshow(spectrogram3, aspect="auto", cmap="gray")
|
||||
axes[2].set_title("spectrogram 3")
|
||||
axes[2].axis("off")
|
||||
|
||||
plt.tight_layout()
|
||||
plt.show()
|
||||
|
||||
|
||||
def enhance_stereo(model, lossy_path, output_path):
|
||||
# Load stereo audio (returns shape: (2, T) if stereo)
|
||||
y, sr = librosa.load(lossy_path, sr=SR, mono=False) # mono=False preserves channels
|
||||
|
||||
# Ensure shape is (2, T)
|
||||
if y.ndim == 1:
|
||||
raise ValueError("Input is mono! Expected stereo.")
|
||||
|
||||
y_l = y[0]
|
||||
y_r = y[1]
|
||||
|
||||
y_enhanced_l = enhance_audio(model, y_l, sr)
|
||||
y_enhanced_r = enhance_audio(model, y_r, sr)
|
||||
|
||||
stereo_reconstructed = np.vstack((y_enhanced_l, y_enhanced_r))
|
||||
|
||||
import soundfile as sf
|
||||
|
||||
# Save (soundfile handles (2, T) -> stereo correctly)
|
||||
sf.write(output_path, stereo_reconstructed.T, sr) # Note: .T to (T, 2) if required
|
||||
|
||||
|
||||
# accepts shape (513, T)!!!!
|
||||
def denorm_torch(spectrogram):
|
||||
return spectrogram * (freq_std_torch[:, None] + 1e-8) + freq_mean_torch[:, None]
|
||||
|
||||
|
||||
# accepts shape (513, T)!!!!
|
||||
def normalize(spectrogram):
|
||||
return (spectrogram - freq_mean[:, None]) / (freq_std[:, None] + 1e-8)
|
||||
|
||||
|
||||
# accepts shape (513, T)!!!!
|
||||
def denorm(spectrogram):
|
||||
return spectrogram * (freq_std[:, None] + 1e-8) + freq_mean[:, None]
|
||||
|
||||
|
||||
def enhance_audio(model, audio, sr):
|
||||
# Convert to log-mag
|
||||
X = audio_to_logmag(x) # (513, T)
|
||||
X = audio_to_logmag(audio) # (513, T)
|
||||
stft = librosa.stft(audio, n_fft=N_FFT, hop_length=HOP)
|
||||
|
||||
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
X_tensor = torch.tensor(X, dtype=torch.float32).unsqueeze(0).to(device) # (T, 513)
|
||||
@@ -189,16 +332,26 @@ def enhance_audio(model, lossy_path, output_path):
|
||||
Y_pred = model(X_tensor).cpu().numpy() # (1, T, 513)
|
||||
Y_pred = Y_pred.squeeze(0) # back to (T, 513)
|
||||
|
||||
Y_pred = denorm(Y_pred)
|
||||
|
||||
# Clip to valid range (log1p output ≥ 0)
|
||||
Y_pred = np.maximum(Y_pred, 0)
|
||||
|
||||
# Invert log
|
||||
mag_pred = np.expm1(Y_pred) # inverse of log1p
|
||||
phase_lossy = np.angle(stft)
|
||||
|
||||
# Reconstruct with Griffin-Lim
|
||||
y_reconstructed = librosa.griffinlim(
|
||||
mag_pred, n_iter=30, hop_length=HOP, win_length=N_FFT, n_fft=N_FFT
|
||||
)
|
||||
# Combine: enhanced mag + original phase
|
||||
stft_enhanced = mag_pred * np.exp(1j * phase_lossy)
|
||||
y_reconstructed = librosa.istft(stft_enhanced, n_fft=N_FFT, hop_length=HOP)
|
||||
return y_reconstructed
|
||||
|
||||
|
||||
def enhance_mono(model, lossy_path, output_path):
|
||||
# Load
|
||||
x, sr = librosa.load(lossy_path, sr=SR)
|
||||
|
||||
y_reconstructed = enhance_audio(model, x, sr)
|
||||
|
||||
import soundfile as sf
|
||||
|
||||
|
||||
Reference in New Issue
Block a user