Upload files to "/"

This commit is contained in:
2026-01-07 12:19:00 +01:00
parent 3b9adb1ee8
commit 478e8e2971
4 changed files with 411 additions and 0 deletions

74
caveman_wavedataset.py Normal file
View File

@@ -0,0 +1,74 @@
import os
import torch
import librosa
from torch.utils.data import Dataset
import numpy as np
import random
HOP = 512
N_FFT = 1024
DURATION = 2.0
SR = 44100
def audio_to_logmag(audio):
# STFT
stft = librosa.stft(audio, n_fft=N_FFT, hop_length=HOP)
mag = np.abs(stft)
logmag = np.log1p(mag) # log(1 + x) for stability
return logmag # shape: (1, freq_bins, time_frames) = (1, 513, T)
class WaveformDataset(Dataset):
def __init__(self, lossy_dir, clean_dir, sr=SR, segment_sec=4):
self.cache = dict()
self.sr = sr
self.lossy_dir = lossy_dir
self.clean_dir = clean_dir
self.segment_len = int(segment_sec * sr)
self.lossy_files = sorted(os.listdir(lossy_dir))
self.clean_files = sorted(os.listdir(clean_dir))
self.file_pairs = [
(f, f) for f in self.lossy_files if f in set(self.clean_files)
]
def __len__(self):
return len(self.file_pairs)
def __getitem__(self, idx):
if idx in self.cache:
return self.cache[idx]
lossy_path = os.path.join(self.lossy_dir, self.lossy_files[idx])
clean_path = os.path.join(self.clean_dir, self.clean_files[idx])
# Load
lossy, _ = librosa.load(lossy_path, sr=self.sr, mono=True)
clean, _ = librosa.load(clean_path, sr=self.sr, mono=True)
# Match length
min_len = min(len(lossy), len(clean))
lossy, clean = lossy[:min_len], clean[:min_len]
# Random 2-second clip
clip_len = int(DURATION * SR)
if min_len < clip_len:
# pad if too short
lossy = np.pad(lossy, (0, clip_len - min_len))
clean = np.pad(clean, (0, clip_len - min_len))
start = 0
else:
start = random.randint(0, min_len - clip_len)
lossy = lossy[start : start + clip_len]
clean = clean[start : start + clip_len]
ans = (
torch.from_numpy(audio_to_logmag(lossy)).unsqueeze(0),
torch.from_numpy(audio_to_logmag(clean)).unsqueeze(0),
)
self.cache[idx] = ans
return ans

210
cavemanml.py Normal file
View File

@@ -0,0 +1,210 @@
import os
import sys
import random
import warnings
import librosa
import numpy as np
import torch.nn as nn
import torch
from caveman_wavedataset import WaveformDataset
from torch.utils.data import DataLoader
from torch.cuda.amp import autocast, GradScaler
import torch.optim.lr_scheduler as lr_scheduler
warnings.filterwarnings("ignore")
CLEAN_DATA_DIR = "./fma_small"
LOSSY_DATA_DIR = "./fma_small_compressed_64/"
SR = 44100 # sample rate
DURATION = 2.0 # seconds per clip
N_MELS = None # we'll use full STFT for now
HOP = 512
N_FFT = 1024
def audio_to_logmag(audio):
# STFT
stft = librosa.stft(audio, n_fft=N_FFT, hop_length=HOP)
mag = np.abs(stft)
logmag = np.log1p(mag) # log(1 + x) for stability
return logmag # shape: (freq_bins, time_frames) = (513, T)
class CavemanEnhancer(nn.Module):
def __init__(self, freq_bins=513):
super().__init__()
self.net = nn.Sequential(
nn.Conv2d(in_channels=1, out_channels=32, kernel_size=5, padding=2),
nn.ReLU(),
nn.Conv2d(32, 32, kernel_size=3, padding=1),
nn.ReLU(),
nn.Conv2d(32, 1, kernel_size=3, padding=1),
)
def forward(self, x):
# x: (batch, freq_bins)
return self.net(x)
BATCH_SIZE = 4
EPOCHS = 100
def main():
# Model
device = "cuda" if torch.cuda.is_available() else "cpu"
print(device)
ans = input("Do you want to use this device?")
if ans != "y":
exit(1)
model = CavemanEnhancer().to(device)
if len(sys.argv) > 1:
model.load_state_dict(
torch.load(sys.argv[1], weights_only=False)["model_state_dict"]
)
model.eval()
enhance_audio(
model,
"./mirror_mirror_compressed_64.mp3",
"./mirror_mirror_decompressed_64_mse.wav",
)
# Load
x, sr = librosa.load("./mirror_mirror_compressed_64.mp3", sr=SR)
# Convert to log-mag
X = audio_to_logmag(x) # (513, T)
# Clip to valid range (log1p output ≥ 0)
Y_pred = np.maximum(X, 0)
# Invert log
mag_pred = np.expm1(Y_pred) # inverse of log1p
# Reconstruct with Griffin-Lim
y_reconstructed = librosa.griffinlim(
mag_pred, n_iter=30, hop_length=HOP, win_length=N_FFT, n_fft=N_FFT
)
import soundfile as sf
# Save
sf.write("./mirror_mirror_compressed_64_STFT.mp3", y_reconstructed, sr)
return
# Data
dataset = WaveformDataset(LOSSY_DATA_DIR, CLEAN_DATA_DIR, sr=SR)
n_val = int(0.1 * len(dataset))
n_train = len(dataset) - n_val
train_indices = list(range(n_train))
val_indices = list(range(n_train, len(dataset)))
train_dataset = torch.utils.data.Subset(dataset, train_indices)
val_dataset = torch.utils.data.Subset(dataset, val_indices)
train_loader = DataLoader(
train_dataset,
batch_size=BATCH_SIZE,
shuffle=True,
pin_memory=True,
num_workers=16,
)
val_loader = DataLoader(
val_dataset,
batch_size=4,
shuffle=False,
num_workers=10,
pin_memory=True,
)
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
scheduler = lr_scheduler.ReduceLROnPlateau(
optimizer,
mode="min",
factor=0.1,
patience=5,
cooldown=3,
threshold=1e-3,
)
from tqdm import tqdm
criterion = nn.L1Loss()
# Train
for epoch in range(EPOCHS):
model.train()
for lossy, clean in tqdm(train_loader, desc="Training"):
lossy, clean = lossy.to(device), clean.to(device)
with autocast():
enhanced = model(lossy)
loss = criterion(clean, enhanced)
optimizer.zero_grad()
loss.backward()
optimizer.step()
model.eval()
total_loss = 0.0
val_loss = 0
with torch.no_grad():
for lossy, clean in tqdm(val_loader, desc="Validating"):
lossy, clean = lossy.to(device), clean.to(device)
output = model(lossy)
loss_ = criterion(output, clean)
total_loss += loss_.item()
val_loss = total_loss / len(train_loader)
scheduler.step(val_loss) # Update learning rate based on validation loss
if (epoch + 1) % 10 == 0:
lr = optimizer.param_groups[0]["lr"]
print(f"LR: {lr:.6f}")
print(f"Epoch {epoch + 1}, Loss: {loss.item():.4f}, Val: {val_loss:.4f}")
torch.save(
{
"epoch": epoch,
"model_state_dict": model.state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
"loss": loss,
},
f"checkpoint{epoch}.pth",
)
def enhance_audio(model, lossy_path, output_path):
# Load
x, sr = librosa.load(lossy_path, sr=SR)
# Convert to log-mag
X = audio_to_logmag(x) # (513, T)
device = "cuda" if torch.cuda.is_available() else "cpu"
X_tensor = torch.tensor(X, dtype=torch.float32).unsqueeze(0).to(device) # (T, 513)
with torch.no_grad():
Y_pred = model(X_tensor).cpu().numpy() # (1, T, 513)
Y_pred = Y_pred.squeeze(0) # back to (T, 513)
# Clip to valid range (log1p output ≥ 0)
Y_pred = np.maximum(Y_pred, 0)
# Invert log
mag_pred = np.expm1(Y_pred) # inverse of log1p
# Reconstruct with Griffin-Lim
y_reconstructed = librosa.griffinlim(
mag_pred, n_iter=30, hop_length=HOP, win_length=N_FFT, n_fft=N_FFT
)
import soundfile as sf
# Save
sf.write(output_path, y_reconstructed, sr)
if __name__ == "__main__":
main()

BIN
checkpoint_64k.pth Normal file

Binary file not shown.

127
compress.bash Normal file
View File

@@ -0,0 +1,127 @@
#!/bin/bash
# =============================================================================
# Batch Audio Compressor - 96 kbps AAC
# Preserves folder structure, uses ffmpeg + GNU parallel + hardware acceleration
# =============================================================================
set -euo pipefail
# -------------------------------
# Configuration
# -------------------------------
SOURCE_DIR="${1:-./audio_source}"
OUTPUT_DIR="${2:-./audio_96kbps}"
LOG_FILE="./compression.log"
#NUM_JOBS="1"
NUM_JOBS="${PARALLEL_JOBS:-$(nproc)}" # Use all cores by default
# Supported input audio extensions (lowercase)
declare -a AUDIO_EXTS=("wav" "flac" "aiff" "aif" "mp3" "m4a" "ogg" "wma" "ac3" "alac")
# -------------------------------
# Functions
# -------------------------------
log() {
echo "[$(date '+%Y-%m-%d %H:%M:%S')] $*" | tee -a "$LOG_FILE"
}
detect_hw_accel() {
echo "vdpau"
return
# Cuda?
if ffmpeg -hwaccels 2>/dev/null | grep -q cuda; then
echo "cuda"
# Try to detect available hardware acceleration
elif ffmpeg -hwaccels 2>/dev/null | grep -q vaapi; then
echo "vaapi"
elif ffmpeg -buildconf 2>&1 | grep -q "enable-vdpau"; then
echo "vdpau"
elif [[ "$(uname)" == "Darwin" ]] && ffmpeg -codecs 2>/dev/null | grep -q 'h264.* videotoolbox'; then
echo "videotoolbox"
else
echo "none"
fi
}
get_hw_args() {
local hw_accel="$1"
local input_file="$2"
case "$hw_accel" in
"vaapi")
echo "-vaapi_device /dev/dri/renderD128 -vf 'format=nv12,hwupload' -c:a aac -b:a 64k"
;;
"videotoolbox")
# Apple's VideoToolbox (macOS) — fast for H.264, less useful for audio, but can accelerate some codecs
# Note: Audio encoding isn't accelerated, but we include for completeness if video is present
echo "-c:a aac -b:a 64k -c:v h264_videotoolbox"
;;
*)
echo "-c:a libmp3lame -b:a 64k" # Fallback to software encoding
;;
esac
}
# -------------------------------
# Input validation
# -------------------------------
if [[ ! -d "$SOURCE_DIR" ]]; then
echo "Error: Source directory does not exist: $SOURCE_DIR"
echo "Usage: $0 <source_dir> <output_dir>"
exit 1
fi
mkdir -p "$OUTPUT_DIR"
log "Starting compression of '$SOURCE_DIR' -> '$OUTPUT_DIR' at 96 kbps AAC"
log "Using $NUM_JOBS parallel jobs"
# -------------------------------
# Detect hardware acceleration
# -------------------------------
HW_ACCEL="$(detect_hw_accel)"
log "Hardware acceleration detected: $HW_ACCEL"
# -------------------------------
# Find all audio files and process them via parallel
# -------------------------------
# Export functions and variables for GNU parallel
export -f get_hw_args
export SOURCE_DIR
export OUTPUT_DIR
export HW_ACCEL
# Build find command for all audio extensions
find_cmd="find \"$SOURCE_DIR\" -type f \\( "
for ext in "${AUDIO_EXTS[@]}"; do
find_cmd+=" -iname \"*.${ext}\" -o"
done
# Replace trailing "-o" with "\\)"
find_cmd="${find_cmd% -o} \\)"
# Use eval to execute the dynamic find command and pipe to parallel
eval "$find_cmd" | sort | parallel -j"$NUM_JOBS" --progress --bar --joblog parallel_jobs.log --eta '
input_file="{}"
rel_path="${SOURCE_DIR:+${input_file#"$SOURCE_DIR"/}}"
output_file="'$OUTPUT_DIR'/${rel_path%.*}.mp3"
# Create output directory if needed
mkdir -p "$(dirname "$output_file")"
if [[ -f "$output_file" ]]; then
echo "Skipped (exists): $rel_path"
exit 0
fi
hw_args=$(get_hw_args "'$HW_ACCEL'" "$input_file")
ffmpeg -v warning -stats \
-i "$input_file" \
$hw_args \
-y "$output_file" \
&& echo "Converted: $rel_path"
'
log "Compression complete. Output saved to: $OUTPUT_DIR"