Upload files to "/"
This commit is contained in:
74
caveman_wavedataset.py
Normal file
74
caveman_wavedataset.py
Normal file
@@ -0,0 +1,74 @@
|
||||
import os
|
||||
import torch
|
||||
import librosa
|
||||
from torch.utils.data import Dataset
|
||||
import numpy as np
|
||||
import random
|
||||
|
||||
|
||||
HOP = 512
|
||||
N_FFT = 1024
|
||||
DURATION = 2.0
|
||||
SR = 44100
|
||||
|
||||
|
||||
def audio_to_logmag(audio):
|
||||
# STFT
|
||||
stft = librosa.stft(audio, n_fft=N_FFT, hop_length=HOP)
|
||||
mag = np.abs(stft)
|
||||
logmag = np.log1p(mag) # log(1 + x) for stability
|
||||
return logmag # shape: (1, freq_bins, time_frames) = (1, 513, T)
|
||||
|
||||
|
||||
class WaveformDataset(Dataset):
|
||||
def __init__(self, lossy_dir, clean_dir, sr=SR, segment_sec=4):
|
||||
self.cache = dict()
|
||||
self.sr = sr
|
||||
self.lossy_dir = lossy_dir
|
||||
self.clean_dir = clean_dir
|
||||
self.segment_len = int(segment_sec * sr)
|
||||
self.lossy_files = sorted(os.listdir(lossy_dir))
|
||||
self.clean_files = sorted(os.listdir(clean_dir))
|
||||
self.file_pairs = [
|
||||
(f, f) for f in self.lossy_files if f in set(self.clean_files)
|
||||
]
|
||||
|
||||
def __len__(self):
|
||||
return len(self.file_pairs)
|
||||
|
||||
def __getitem__(self, idx):
|
||||
if idx in self.cache:
|
||||
return self.cache[idx]
|
||||
|
||||
lossy_path = os.path.join(self.lossy_dir, self.lossy_files[idx])
|
||||
clean_path = os.path.join(self.clean_dir, self.clean_files[idx])
|
||||
|
||||
# Load
|
||||
lossy, _ = librosa.load(lossy_path, sr=self.sr, mono=True)
|
||||
clean, _ = librosa.load(clean_path, sr=self.sr, mono=True)
|
||||
|
||||
# Match length
|
||||
min_len = min(len(lossy), len(clean))
|
||||
lossy, clean = lossy[:min_len], clean[:min_len]
|
||||
|
||||
# Random 2-second clip
|
||||
|
||||
clip_len = int(DURATION * SR)
|
||||
if min_len < clip_len:
|
||||
# pad if too short
|
||||
lossy = np.pad(lossy, (0, clip_len - min_len))
|
||||
clean = np.pad(clean, (0, clip_len - min_len))
|
||||
start = 0
|
||||
else:
|
||||
start = random.randint(0, min_len - clip_len)
|
||||
lossy = lossy[start : start + clip_len]
|
||||
clean = clean[start : start + clip_len]
|
||||
|
||||
ans = (
|
||||
torch.from_numpy(audio_to_logmag(lossy)).unsqueeze(0),
|
||||
torch.from_numpy(audio_to_logmag(clean)).unsqueeze(0),
|
||||
)
|
||||
|
||||
self.cache[idx] = ans
|
||||
|
||||
return ans
|
||||
Reference in New Issue
Block a user