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Abstrakt

Tradičné mechanizmy riadenia prístupu v operačných systémoch povoľujú rovnakú
úroveň prístupu všetkým procesom bežiacim v mene toho istého používateľa. Toto typ-
icky umožňuje škodlivým procesom čítať a/alebo modifikovať všetky údaje prístupné
používateľovi, ktorý spustil zraniteľnú aplikáciu. Dá sa to riešiť použitím rôznych
mechanizmov povinného riadenia prístupu, no tieto sú často náročné na konfiguráciu a
zriedkavo sa používajú v bežných scenároch orientovaných na používateľa. Táto práca
sa zameriava na návrh a implementáciu vrstvy súborového systému, ktorá rozhodnu-
tie povoliť alebo zakázať prístup k objektu súborového systému konkrétnym procesom
deleguje na používateľa.

Kľúčové slová: riadenie prístupu, súborové systémy, FUSE, súhlas používateľa, na-
jmenšie oprávnenie, oprávnenia, udeľovanie oprávnení, riadenie prístupu riadené použí-
vateľom.



Abstract

Traditional access control mechanisms in operating systems allow the same level of
access to all processes running on behalf of the same user. This typically enables
malicious processes to read and/or modify all data accessible to the user running a
vulnerable application. It can be dealt using various mandatory access control mecha-
nisms, but these are often complicated to configure and are rarely used in common user
oriented scenarios. This thesis focuses on design and implementation of a filesystem
layer which delegates the decision to allow or deny access to a filesystem object by a
specific process to the user.

Keywords: access control, filesystems, FUSE, user consent, least-privilege, permis-
sions, permission granting, user-driven access control.
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Introduction

In modern operating systems, access control mechanisms are fundamental to ensuring
the confidentiality, integrity, and availability of system resources. These mechanisms
dictate how users and processes interact with system objects such as files, directories,
and devices. However, traditional access control models, such as the discretionary
access control (DAC) employed by Linux and other Unix-like systems, operate under
the assumption that all processes running under the same user account should have
the same level of access to system resources. While this simplifies user management
and permissions, it can introduce significant security risks.

The problem arises when a process or application running under a user’s account
becomes compromised. In such cases, the malicious code or exploit can leverage the
user’s existing permissions to access or modify sensitive data, potentially leading to
data breaches or other security incidents. This fundamental limitation of traditional
access control mechanisms underscores the need for a more granular and dynamic
approach to file system access control.

Over the years, various mandatory access control (MAC) mechanisms, such as
SELinux (Security-Enhanced Linux) and AppArmor have been developed to address
these limitations. These systems enforce access control policies at a more granular
level, often based on labels or rules defined by system administrators. While these
mechanisms are effective in certain scenarios, they are generally complex to configure
and require significant expertise to maintain. As a result, they are rarely adopted in
common user-oriented environments, where simplicity and ease of use are paramount.

In this thesis we introduce our approach to file system access control that empowers
users to make real-time decisions about which processes or applications should have
access to specific file system objects. By integrating an interactive decision-making
layer into the file system, this solution aims to bridge the gap between the security
benefits of MAC mechanisms and the simplicity required for widespread adoption.
The proposed system delegates access control decisions to the user, enabling them to
grant or deny access to individual processes or applications on a per-object basis. This
approach not only enhances security but also maintains the flexibility and usability
that are critical for user-oriented systems.

The rest of this thesis is organised as follows: Chapter 1 and chapter 2 provide a
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2 Introduction

review of existing access control mechanisms and their limitations. Chapter 3 outlines
the design objectives, and the interactive component of the proposed file system layer.
Chapter 4 describes the implementation process, including the tools and techniques
used to develop the system. Finally, in chapter 5 we present experimental results,
evaluate the performance, security benefits and limitations of the proposed solution,
and discuss the potential for further development.



Chapter 1

Filesystem access control on Linux

1.1 Traditional UNIX Filesystem Access Control Poli-

cies

By default, UNIX-like operating systems only provide simplistic Discretionary Access
Control (DAC) policies whose objects are files, and subjects are users.

The policy used by traditional UNIX systems is based on the concepts of file owner,
group of a file, and others. For each file, the access rights for these three categories
can be specified independently using a so-called access mode. The access mode is a
bitmask which specifies whether the file owner, the group of the file, and others have
read, write, or execute permissions.

Each process has it’s own Effective User ID (EUID), the user that the process is
running on behalf of. When a process tries to access a file, the kernel checks the access
mode of the file, and grants or denies access based on the following rules:

• If the process’s effective user ID matches the file owner, the file owner’s access
mode is used.

• Otherwise if the process belongs to the group of the file, then the group’s access
mode is used.

• If neither condition holds, others’ access modes are applied.

The access mode is stored in the file’s inode, and can be changed by a process with
the file owner’s user ID using the chmod system call. The file owner is the user who
created the file, and can be changed using the chown system call by a process with
the effective user ID of a superuser. The group of a file is set to the group of the file
owner when the file is created, and can also be changed using the chown system call
by a process with the effective user ID of a superuser.

3



4 CHAPTER 1. FILESYSTEM ACCESS CONTROL ON LINUX

Later, a feature called Access Control Lists (ACL) was introduced to many UNIX-
like operating systems and eventually included in the POSIX standard. ACLs provide
the ability to control file permissions of specific users, rather than just owner, group
and others. Similar to the classic UNIX access control policies, only processes running
with the user ID that matches the owner user ID of a file can change its ACLs.

1.2 The Inherent Flaw of User-Centric Access Con-

trol

Although this kind of access control solutions has been proven to be helpful in multi-
user environments, it is obviously insufficient to protect against an attack performed
by a process initiated by the same user.

The fundamental weakness of the traditional UNIX DAC model, and even its ex-
tension with ACLs, lies in its reliance on user identity as the primary access control
decision point. While effective at separating access between different users, it provides
little to no protection within a user’s own account. This deficiency is particularly prob-
lematic in modern computing environments where a user’s processes are increasingly
complex and often involve downloaded or third-party code.

This vulnerability stems from the “all or nothing” nature of user ownership. A
process running with user’s EUID inherits all of user’s privileges, treating all files
they own as equally accessible. There’s no way to restrict a specific process, even
one initiated by the user themselves, from accessing certain files or performing certain
operations.

These limitations highlight the need for more sophisticated access control mecha-
nisms that go beyond simple user identity and consider the context and trustworthiness
of the process attempting to access a resource. Mandatory Access Control (MAC) and
sandboxing technologies are emerging solutions aiming to address these shortcomings
by introducing finer-grained control over process privileges and resource access. The
following chapter will explore these alternatives in detail.



Chapter 2

Current Solutions, and Why They
Won’t Suffice

2.1 MAC Mechanisms

Many Linux OS ship with additional Mandatory Access Control (MAC) mechanisms
(e.g. AppArmor, SELinux) that allow to restrict the usage of file system objects by
specific programs.

Unfortunately, these mechanisms require a considerable amount of knowledge and
effort for the user to manage them, which makes them infeasible for most single-user
environments.

2.2 FGACFS

In Lovyagin et. al. 2020 [1] authors propose and implement a so called FGACFS file sys-
tem that extends traditional UNIX access control policies with far more sophisticated
and granular system. This also includes the ability to restrict access on per-program
basis. However, due to the sheer variety of options and configurable parameters, this
approach still falls short when it comes to ease of use and user-friendliness.

Additionally, all the above solutions share a significant drawback: they necessitate
user intervention to secure files, even when those files are never accessed. For instance,
if access to a file system object is denied (allowed) for all programs by default and only
allowed (denied) for specific ones, granting (revoking) access for new programs requires
users to modify access permissions proactively.

While some solutions offer automatic inheritance or assignment of rules and access
control policies, they still need extensive manual configuration. Even if inheriting all
access permissions from a default value were practical, installing new programs would
always necessitate updating rules to adhere to the principle of least privilege.
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Another problem of these solutions, is that their policies are granted forever and
the user is never informed about the actual usage of those permissions, which makes
them more vulnerable to attacks by proxy. For example, if the program cat is al-
lowed to read contents of the file ~/secrets/text.txt, malicious program may execute
cat ~/secrets/text.txt > ~/stolen-text.txt command at any time, without any
warning and regardless of whether the malicious program has access to ~/secrets/text.txt
or ~/stolen-text.txt. If the user only granted read permissions to cat when they
are actually using the program themselves, such attack could likely be avoided.

2.3 Containerisation

Another solution to consider, is using containerised software distribution, like Flatpak
[2], Snapcraft [3] or AppImage [4]. Those types of package distribution systems either
use Linux feature called namespaces or leverage MAC mechanisms to isolate software
from the rest of the system. Aside from solving common dependency management
problems, this approach also allows some capabilities of the distributed software to be
restricted, like access to camera, hardware devices, but, most importantly, file system
objects.

However, because the developer of the distributed software is responsible for defining
the permissions that his own program needs, it often leads to programs having excessive
privileges after installation1 without any notification of the user.

Additionally, it is a responsibility of the software developer to choose the distribu-
tion method, and despite containerised software getting more and more popular, there
are still plenty of programs that can only be installed using traditional methods, that
do not offer any mechanisms for restricting file system access.

Furthermore, some software is impractical to sandbox. For example, because of
the FlatPak’s design, CLI software has to be run with flatpak run command and
has to use often long and hard-to-remember package names, which may appear rather
cumbersome for most users.

2.4 Android

Another, similar solution can be found in the Android operating system. Here, all
apps are sandboxed by default. But Android does way more than Flatpak: it adds an
interactive component to the access control.

1It is important to mention, that although this flaw remains unmitigated, the analysis made by
Dunlap et al. 2022 [5] shows that most package maintainers actively attempt to define least-privilege
application policies.
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When an app need permission to access the shared storage (part of the filesystem,
common to all applications), an overlay is displayed, prompting the user for their
decision on whether to allow or deny access to user’s files. Notably, this approach
avoids the problem of granting permissions up front, and always informs the user
about the permissions that the app wishes to have.

(a) (b)

Figure 2.1: Permissions dialogues in Android 14: The location access permission di-
alogue (a) shows three options: “While using the app”, “Only this time” and “Don’t
allow”. The media access permission dialogue also has three, but different options:
“Allow limited access”, “Allow all” and “Don’t allow”

Furthermore, starting in Android 11, whenever an app requests a permission related
to location, microphone, or camera, the user-facing permissions dialogue contains an
option called “Only this time”. If the user selects this option in the dialogue, the app
is granted a temporary one-time permission.[6]

Unfortunately, Android access control system is specific to Android. Also, it inherits
the already mentioned drawbacks of containerisation, and only works through special
API, thus requiring the software to be redesigned to work with such an access control
system.
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2.5 Ranacco

Finally, in McIntosh et al. 2021 [7] authors propose and implement software called
Ranacco, which attempts to analyse various system environmental factors (e.g. latest
mouse and keyboard activity) and file system operations to detect potentially malicious
actions made by processes, in which case it delegates access control decision to the user.
This approach avoids the shortcomings of other possible solutions, while remaining
easy-to-use. Although this system is more advanced than the one we propose in this
thesis, not only is it exclusive to Windows, but it also remains unavailable for the
general public.

2.6 Requirements for the Solution

The key issues with existent solutions, that our the system proposed in this thesis will
try to address are as follows:

• Not all solutions assume processes to be malicious until proven (confirmed by
the user to be) safe. Quite often access control permissions are either predefined,
inferred or assumed.

• Some solutions can only enforce access policies on software that is distributed in
a special way. This leaves the file system just as unprotected against all other
software.

• Most solutions require passive action from the user besides initial installation (e.g.
you have to reconfigure policies all the time). This adds further inconvenience to
using such systems.

• Most solutions grant permissions forever, which significantly increases attack sur-
face. Specifically, this opens up possibilities for attacks by proxy.

• Majority of solutions focus on preventing unwanted access by other users, which
makes it unsuitable for single-user environments.

• Solutions are either overly complex and not user-friendly, or too simplistic to
provide adequate granularity of permissions. This either leads to slower adoption
of such systems, or makes them insufficient at protecting user data.



Chapter 3

Interactively Controlled File System

This chapter presents the solution developed for this thesis, the Interactively Controlled
File System (ICFS), a filesystem layer designed to enhance access control through real-
time user input.

ICFS provides users with direct control over filesystem access decisions. Unlike
traditional systems relying on static policies, ICFS dynamically prompts users for au-
thorisation via a graphical interface, ensuring decisions align with immediate contextual
needs.

Key Features:

• User-Friendly Design: Requires no prior configuration or specialised knowledge.
The intuitive interface eliminates complex terminology, enabling seamless inter-
action.

• Dynamic Policy Enforcement: Permissions are established on-demand and stored
for future reference, minimising repetitive prompts.

• Granular Control: Policies apply at the process-file level, with options to gener-
alise rules for broader categories, reducing user fatigue.

• Backward Compatibility: Implemented via the FUSE framework, ICFS intercepts
system calls without altering existing software workflows.

3.1 Usage

To deploy ICFS, the user selects a target directory and executes the command as shown
in Figure 3.1

This mounts ICFS over the specified directory, enforcing access control for all sub-
sequent interactions. While the name includes “File System,” ICFS operates as a
filesystem layer , intermediating between the physical filesystem (e.g., ext4) and user

9



10 CHAPTER 3. INTERACTIVELY CONTROLLED FILE SYSTEM

icfs <FUSE arguments> [mounpoint] [permission database] <ICFS arguments>

Figure 3.1: Command that mounts ICFS over the folder denoted as [mounpoint], while
using the permanent permission database stored in the file denoted as [permission
database]. <ICFS arguments> and <FUSE arguments> denote ICFS arguments and
libfuse arguments respectively.

processes. It preserves the appearance of the original filesystem while enforcing its own
access logic (implementation details in section 4.1).

3.2 Access Control Model

ICFS adopts a straightforward access control model:

• Subjects: Processes requesting access.

• Objects: Files or directories undergoing access attempts.

When a process requests access (e.g., open, modify, delete) to a file without pre-
existing permissions, ICFS generates an access dialogue (see Figure 3.2).

Figure 3.2: ICFS Access Dialogue: Displays the process executable name, PID, and
target file path. Users may adjust the file scope, toggle permanent permissions, or
grant/deny access.

The dialogue contains three functional elements:
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• Access Grant Buttons.

– Yes Button : Grants temporary access to the requested file to the requesting
process only. If the user selects this option, the process is allowed to proceed
with the requested access (e.g., read, write).

– No Button : Denies access to the file for the current process. The filesys-
tem returns an error (e.g., EACCES) to the requesting process, mimicking
standard permission denial behavior.

• Permanent Permission Checkbox: A toggle labelled “Permanent” allows the user
to persist the access decision beyond the current process. If checked , the permis-
sion rule (allow/deny) is stored in a local configuration database. The rule then
applies to all future access attempts by processes (and any of their child processes)
with an executable filename matching the requesting process. If unchecked , the
decision applies only to the requesting process and it’s child processes. That
is, the process can actually access the file multiple times with this permission.
Permissions granted with this box toggled on (off) will from now on be referred
to as “permanent” (“temporary”).

• File Path Substitution Field: A text input field pre-filled with the absolute path
of the requested file. Users may edit this field to modify scope of the permission
(e.g., granting access to all files in the parent directory instead of a single file).
If user intends to allow the process to all files in a directory, its path has to end
with “/” character.

Behaviour changes slightly, if the operation is performed on a directory or a symbolic
link: If the file is a directory, only changing the access mode and removal require
permission from the user. With symbolic links, following is always permitted. If a
process attempts to create a file, it is automatically granted temporary access to the
file it has created.

To resolve situations, where user sets conflicting permissions with different scopes,
only the more specific permission’s effect is applied. For example, if user first allows a
process to access ~/Documents/book.pdf, but later also denies access to ~/Documents/,
then the process is allowed to access ~/Documents/book.pdf, but no other files in
~/Documents/.

This model addresses five key limitations of traditional systems:

• Reactive Configuration: No upfront setup required; permissions emerge organi-
cally.

• Temporary Permissions: Users may limit access to a single instance.
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• Scalable Granularity: Policies adapt from specific files to broader categories.

The remaining two criteria are analysed in the next section.

3.3 Least Privilege vs. Usability

Balancing the principle of least privilege with usability posed the greatest design chal-
lenge. Strict enforcement – prompting for every access attempt – would minimise risk
but overwhelm users.

To reduce friction, ICFS needs to keep the number of dialogues to minimum. This
necessitates avoiding prompts for actions likely to be safe. However, we still aim to
avoid granting excessive privileges by default.

When ICFS is initially started, no user decisions are known, and thus no processes
have access to protected files. Each new access attempt triggers a privilege escalation
request via the access dialogue.

Applying this rule strictly to all filesystem objects – including directories and sym-
bolic links – with intelligent user decisions, would perfectly adhere to the principle of
least privilege.

However, such strictness would render ICFS excessively cumbersome to use. To
mitigate this, the rule has been relaxed to compromise user data as little as possible.

Firstly, Unlike POSIX, ICFS does not restrict directory visibility. While this ex-
poses file structures, directory names rarely contain sensitive data.

Second, processes are permitted to create files without restriction. This decision is
based on the observation that many programs create auxiliary and temporary files. For
instance, the pdfLaTeX compiler creates 21 files in the source directory for this thesis,
only 10 of which are human-editable; the remaining files are intermediary output of
the compiler. Requiring the user to grant permissions for all these files would more
than double the decision-making burden.

While this approach increases the potential for malicious processes to disrupt other
processes, the risk is considered lower than the burden of constantly prompted permis-
sion requests. We discuss these limitations in section 5.3.

Thirdly, all access permissions apply to the child processes too. Since only the
parent process has control over starting its children, it is theoretically safe to presume
that non-malicious processes won’t spawn malicious child processes. Of course, this
presumption is not necessarily true in reality: programs contain a plethora of bugs
some of which might as well allow for arbitrary code execution, and thus starting of
unwanted programs as its children.

However, we decided that the burden caused by having to allow access to all its
children is way too high. For example, the Neovim text editor may spawn up to five
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additional child processes that analyse the opened file, such as code linters, formatters
and debuggers. We discuss potential threats that relate to this rule in section 5.3.
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Chapter 4

Implementation

This chapter outlines the software design and architecture of ICFS, detailing how these
elements address the challenge of fine-grained access control. Subsequent sections in-
troduce the FUSE framework, methods for managing process-specific permissions, and
the architectural strategies employed to mitigate unauthorised filesystem access.

4.1 FUSE Framework

To regulate filesystem operations, ICFS employs the FUSE (Filesystem in Userspace)
framework[8], which intercepts filesystem calls. FUSE enables the creation of custom
filesystems or layers in user space, offering flexibility and ease of implementation. It
provides an API for developers to define filesystem behavior. Once implemented (here-
after termed the FUSE application ), the system mounts the custom filesystem at a
specified location, substituting standard filesystem operations with methods defined
by the API.

ICFS implements this API in C using the libfuse3 library [9]. It initializes the FUSE
daemon via the fuse_main() function, which manages communication between the
kernel and the FUSE application. Rather than directly overriding system calls, FUSE
interacts with the kernel through /dev/fuse, a specialized device file that translates
filesystem requests into API method invocations using a dedicated protocol.

ICFS does not have a backing store (a separate filesystem that contains actual
data). Instead, it functions as a so-called passthrough filesystem, where system calls
are forwarded to the original filesystem, if access control policies allow them.

To enforce access restrictions, ICFS mounts directly over the target directory, inter-
cepting all access requests directed to it. As part of Linux’s Virtual Filesystem (VFS)
architecture, processes interacting with the protected directory are routed through
ICFS. However, ICFS retains direct access to the underlying files by opening the di-
rectory with the O_PATH flag before mount. Subsequent operations are executed us-
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ing “at”-suffixed system calls like openat(), performed directly at the file descriptor
level[10], which bypasses ICFS’s own layer.

4.2 Permission Tables

To enforce an access control policy over time, filesystem needs to store user decisions
in an appropriate data structure. As described in section 3.2, ICFS can give out two
types of permissions: temporary and permanent. To accommodate this access control
model, ICFS implements two data structures: a temporary permissions table, and
a permanent permissions table, which we describe in detail in subsection 4.2.1 and
subsection 4.2.2 respectively.

To pass permissions to child processes, both tables use procfs. When a permission
check for the requesting process yields no results, recursive checks are performed on
parent processes by traversing the process tree.

4.2.1 Temporary Permissions

To function, temporary permissions storage should contain all information needed to
identify the process, and associate the files to which the access is denied or allowed
with it. We chose to keep track of processes by comparing the following characteristics:

• Process ID: Number that uniquely identifies a process on Linux systems.

• Start time: The time the process started after system boot. The value is expressed
in clock ticks.

The process is considered the same if and only if both characteristics match.
At first, it might seem that factoring in start time is excessive. However, only using

PID as the only identifying property of a process is problematic: PID is only unique
among the currently running processes, not across the entire uptime of the system.
Processes can not only acquire the PID of another, already finished process, but also
attempt to request a specific PID. The start time is looked up in procfs by PID, which
is provided by libfuse.

The temporary permissions table consists of tuples (pid, starttime, allowed, denied),
where allowed and denied are sequences of files, that the process is allowed or denied
to access respectively.

In our implementation, entries are organised in a hash map, with PIDs as keys.
This provides quick lookup of entries much needed for filesystem operations. ICFS
uses the hash map implementation from the Convenient Containers library [11], that is
well-tested and has an intuitive interface, which has helped to simplify the development.



4.3. ACCESS DIALOGUES 17

One disadvantage of such a data structure, is that there isn’t any inherent mecha-
nism to remove entries that are no longer valid (e.g. permissions of a process that is
already finished).

Unfortunately, we haven’t found an efficient way to remove expired entries in the
temporary permission table. On Linux, a process can’t be notified of other processes’
end unless they are child processes or the tracking process is being run with superuser
permissions [12]. Hence, we had to resort to cleaning out expired entries using the
garbage collection technique: an independent thread periodically checks validity of
every entry in the table. If an entry is invalid, it is erased.

4.2.2 Permanent Permissions

Since permanent permissions are granted to all processes’ with the same executable,
only it’s filename is needed for identification. Since the permissions have to persist
after filesystem restart, the table needs to be stored on the disk. Hence, we chose
SQLite [13] as the backend for the permanent permissions table. It is well-tested and
lightweight, making it an ideal choice for a program like ICFS.

Due to specifics of relational databases, the permissions are stored as a relation
(executable, filename, type), where executable is the filename of the executable, filename

is a filename of the file that the permission targets and type is a boolean value indicating
whether the permission allows or prohibits access to the target file.

The database is stored in a file on the disk that the user chooses during startup.
The database file is protected from outside access using standard POSIX permissions:
during installation, a special user is created for ICFS, the owner UID of the executable
is set to the UID of the new user, and the setuid bit is set, to allow other users to
launch ICFS as a special user. On startup, database file is created as the special user,
and the access mode is set to prohibit access by any other user. After the database is
opened, UID of ICFS process (effective UID) is switched to the UID of the user (real
UID) that originally started it using the setuid system call. The database remains
open for the rest of the runtime of ICFS.

Unfortunately, in the current version of ICFS there is no way to edit the permanent
permission table. We address this limitation in more detail in section 5.5.

4.3 Access dialogues

Access dialogues are implemented as a separate program, that the FUSE daemon
spawns using the popen function, provided by the standard C library. In the argu-
ments, daemon specifies (in this order):

• The PID of the requesting process.
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• Path to the process’s executable.

• ICFS’s mountpoint.

• Name of the file the process is attempting to access.

After user completes their interaction, the access dialogue finishes with exit code
corresponding to the access control decision and writes filename that this decision
relates to in its standard output. Daemon then validates the filename correctness.

If the filename specified in the dialogue does not correspond to a real file, or mod-
ifying the process’s access to the specified file won’t resolve the original request, ac-
cess dialogue is displayed again. For example, if the process requests access to a
file ~/Documents/book.pdf, but in the dialogue they specify a nonexistent file, or
~/Documents/other.txt (which exists), the dialogue would be displayed again.

In the current version, file substitution field correctness checks are not integrated in
the access dialogue program, and are entirely delegated to the FUSE daemon. Giving
user immediate feedback on input validity within access dialogues can potentially be a
valuable usability improvement.

The access dialogue program is written in C, and uses GTK4 and libadwaita libraries
to provide a graphical interface.



Chapter 5

Results

We tried to assess the quality of ICFS by the following metrics:

• Security : Does ICFS effectively mitigate unauthorized access by untrusted pro-
cesses?

• Usability : Does the interactive model reduce configuration burden while main-
taining user control?

• Performance : What is the overhead introduced by ICFS compared to native
filesystem operations?

5.1 Test Environment

Performance and usability evaluations were conducted on an HP Pavilion Laptop
15-cc563st equipped with an Intel® Core™ i7-7500U processor, a Western Digital
WDS250G2B0B WD Blue 3D NAND M.2 SATA SSD (250GB), and 12 GB of DDR4
RAM. The system ran Fedora Linux 42 (Workstation Edition) with kernel version
6.14.5-300.fc42.x86_64 and GNOME 48 under the Wayland session, and a btrfs-formatted
disk. For additional compatibility testing, a KVM virtual machine hosted on the same
hardware emulated a Debian GNU/Linux 12 (bookworm) environment with kernel
6.1.0-27-amd64, ext4 filesystem, GNOME 43.9, and the X11 windowing system. The
virtual machine had 2 CPU cores and 2 GB of RAM.

To simulate real-world usage, ICFS was mounted to a directory pre-populated with
files, and interactions were tested across eight widely used applications:

• TEXstudio.

• Programming IDE/text editor (Neovim).

• Markdown editor (Apostrophe).

19
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• A web browser (Mozilla Firefox).

• File manager (GNOME Files, also known as Nautilus).

• File synchronisation software (Syncthing).

• Standard command line core utilities (e.g. ls, cd, grep, ...).

These tools were selected for their prevalence and diverse filesystem interaction
patterns. Except for Syncthing, Apostrophe (distributed via Flatpak containers) and
Firefox (Flatpak and native versions), all applications were installed as native packages.

5.2 Usability

Testing revealed that most applications interacted smoothly with ICFS. Command line
utilities, Syncthing, Apostrophe, TeXstudio and Neovim required a single permission
prompt when opening existing files, with no further interruptions for new file creation.
Furthermore, they have only maintained access to files they actually needed to function.

GNOME Files (Nautilus) exhibited unexpected behaviour. While functional with-
out access permissions, its thumbnail generation process triggered repeated prompts.
The file manager employs an external utility, gdk-pixbuf-thumbnailer, to create pre-
views of files such as images.

Figure 5.1: Example of a picture mini-preview: image on the left is the scaled-down
version of the actual image stored in the file.

Each preview required individual authorisation because the thumbnailer operates
per-file, invalidating temporary folder permissions after each new image access. A
pragmatic solution involves granting permanent access to the thumbnailer for specific
directories – a trade-off between convenience and security.

Firefox interactions were limited to file downloads and uploads, which utilise system-
level file selection dialogues provided by xdg-desktop-portal service, and managed
by the system file manager.
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Figure 5.2: File selection dialogue in Firefox.

Hence, it inherited all the usability issues Nautilus had. This dependency also
introduced security implications discussed in the following section.1

Impact on shell script usability was significant. Since each shell command spawns a
new process, users must grant permissions for every command individually.2 A partial
mitigation involved redirection operators (>, >>), which force the shell interpreter to
handle file operations, allowing child processes to inherit permissions. However, this
approach breaks compatibility with existing scripts. This limitation was anticipated,
and potential solutions are discussed in section 5.5.

5.3 Security

While ICFS represents a significant improvement over traditional access control systems
in single-user environments, its design contains notable limitations.

ICFS theoretically allows users to control every filesystem access operation, but
the system’s security depends heavily on the user’s ability to interpret and respond to
access requests. Despite efforts to make the interface accessible, the system generates
prompts that may confuse average users. For example, access attempts by Apostrophe
were displayed as actions by /usr/bin/python3.12. This occurs because Apostrophe
is written in Python, an interpreted language: all Python programs execute under
the Python interpreter, causing dialogues to display the interpreter path rather than
the application name. This limitation stems from ICFS’s permission system, which

1Only the Flatpak version of Firefox was affected.
2Permanent permissions for core shell utilities are discouraged, as they expose the filesystem to

unrestricted access via these tools.
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tracks processes at the executable level. Users must understand this behavior to avoid
inadvertently granting interpreters permanent access to files, which would expose them
to all scripts executed by the interpreter.

Another challenge arises with Flatpak-packaged applications, which often obscure
filesystem paths within their sandboxes. For instance, Syncthing’s relocated executable
path invalidated /proc/pid/exe, the mechanism ICFS uses to resolve process identi-
ties via the readlink system call. Current implementations rely on unvalidated paths
returned by readlink, leaving the system vulnerable to attacks where malicious pro-
cesses mask their identity by manipulating sandboxed paths.

A functional limitation arises with the xdg-desktop-portal daemon, which cen-
tralises file-chooser interfaces across desktop environments to streamline user interac-
tions. By design, this daemon handles file operations on behalf of requesting processes
via D-Bus, acting as an intermediary that abstracts filesystem access. While this
improves compatibility and user experience, it introduces a challenge for ICFS: the
daemon obscures the identity of the originating process, making it difficult to enforce
granular access control tied to specific applications.

For example, files created or accessed through xdg-desktop-portal inherit permis-
sions based on the daemon itself rather than the requesting application. This creates a
trade-off between usability and precision in access control. To somewhat mitigate un-
intended access, the --no-perm-on-create flag disables automatic permission grants
during file creation. This ensures, that the user would always be informed about the
files programs access through xdg-desktop-portal.

However, the daemon retains user-driven file selection via graphical interfaces, main-
taining safety equivalent to ICFS’s core model (as both depend on GUI interactions
remaining inaccessible to untrusted processes). This highlights a broader design con-
straint: similar trade-offs may exist when integrating with existing or ecosystem-wide
services that centralise filesystem access.

5.3.1 Safety of Graphical Interfaces

While ICFS’s access control system deters unprepared attackers, programmatic GUI
interaction by an informed attacker poses a valid attack vector. ICFS relies on the
assumption that GUI interactions are inaccessible to unprivileged processes; otherwise,
an attacker could programmatically grant themselves permissions.

On X11 systems, tools like xdotool [14] enable unprivileged processes to simulate
keystrokes and interact with windows, as verified in our Debian testing environment. In
contrast, Wayland’s security model restricts such interactions: xdotool and its Wayland
equivalent, ydotool [15], cannot interfere with windows without explicit user permission
via GNOME’s graphical dialogues or superuser configuration.
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Theoretical risks remain via AT-SPI accessibility protocols, which could potentially
interact with access dialogues. As a preventive measure, ICFS disables all accessibility
features in access dialogues. However, this issue was not fully investigated within the
scope of this thesis. Further research is needed to identify and address other potential
attack vectors through desktop environment interfaces.

5.4 Performance

Performance testing revealed a substantial impact on filesystem operations. A bash
script opening large volumes of files in parallel ran in 0.714s on bare btrfs, 16.189s with
temporary ICFS permissions, and 33.409s with permanent permissions. While ICFS’s
access control layer likely affects other operations, these were not tested as they fall
outside its scope.

Despite these synthetic benchmarks, real-world usability remained unaffected. Ap-
plications with intensive filesystem usage, such as Syncthing, experienced no critical
slowdowns.

5.5 Future Work

Current version of ICFS lacks a way to edit permissions once they were granted. A
solution would be to develop a simple tool that would communicate with ICFS daemon
through a UNIX domain socket owned by a special user, and be able to open and edit
the permanent permissions database via sqlite3 library.

Likewise, ICFS currently misses certain quality-of-life features, that might ease user
decsion-making process, such as in-dialogue filename validity checks and more verbose
error messages. As a program that focuses on user interaction, ICFS would greatly
benefit from these improvements.

A critical area for future refinement lies in addressing vulnerabilities stemming from
programmatic interactions with graphical interfaces. ICFS currently assumes that GUI
interactions remain inaccessible to unprivileged processes, yet this premise is challenged
by tools like xdotool (on X11 systems), which can simulate keystrokes and manipulate
windows without user consent. While Wayland’s stricter isolation policies mitigate this
risk – requiring explicit user approval via GNOME dialogues or superuser privileges
for tools like ydotool – other exploits might be available to attackers, that were left
unexplored in this thesis.

Security limitations demand deeper integration with sandboxing frameworks. The
current reliance on resolving process identities via /proc/pid/exe proves insufficient
in containerised environments, where executable paths are visualised. The reliance of
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ICFS on process-level identity introduces challenges when interacting with container-
ised applications, which obscure the original requesting process. Future work could
explore deeper integration with such services to propagate context-aware permissions.
For example, ICFS might integrate with Flatpak permission system to coordinate access
control, possibly even set Flatpak sandbox permissions via graphical access dialogues
(which Flatpak currently lacks).

The current design’s requirement for per-process permission grants creates friction
for shell scripting, where new processes are frequently spawned. A potential solution
involves implementing a session-based model, allowing the user to grant permissions
to all processes with matching session ID (which typically corresponds to a single
shell instance or script). This approach would preserve security while maintaining
compatibility with existing scripts.



Conclusion

This thesis introduced the Interactively Controlled File System (ICFS), a novel ap-
proach to file system access control designed to address the inherent limitations of
traditional discretionary access control (DAC) mechanisms in Linux environments. By
placing access control decisions directly in the hands of users through real-time graph-
ical prompts, ICFS bridges the gap between coarse-grained flexibility of DAC and
the rigid complexity of mandatory access control (MAC) frameworks. The system’s
design prioritises usability without compromising security, enabling users to grant or
deny process-specific permissions dynamically while maintaining backward compatibil-
ity with existing software workflows via the FUSE framework.

The implementation of ICFS demonstrates that granular access control can be
achieved through an interactive model. By allowing temporary permissions and scal-
able policy generalisation, the system minimises both user burden and the risk of
overprivileged processes – a critical weakness in traditional DAC models. Experimen-
tal evaluations confirmed ICFS’s effectiveness in restricting unauthorised access while
maintaining functional compatibility with diverse applications, including text editors,
browsers, and synchronisation tools. However, the system’s reliance on process-level
identity checks revealed limitations in environments involving interpreted languages,
containerised applications, and desktop portals. For instance, Flatpak sandboxes and
the xdg-desktop-portal daemon obscured process origins, undermining the granular-
ity of access control. Similarly, shell scripting workflows faced usability challenges due
to frequent permission prompts, highlighting tensions between security enforcement
and practical usability.

Performance benchmarks indicated a measurable overhead in filesystem operations,
particularly under heavy usage of that involves permission checking. Yet, real-world
usage scenarios showed negligible impact on application responsiveness, suggesting that
the trade-off between security and performance is acceptable for typical user workflows.
Security limitations, such as the potential for GUI automation tools to bypass access
controls on X11 systems, underscore the need for deeper integration with sandboxing
technologies and stricter isolation protocols in graphical environments.

Future refinements to ICFS should focus on three key areas: enhancing interoper-
ability with containerisation frameworks to preserve process context within sandboxes,
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developing session-based permission models to streamline shell script execution, and
implementing robust mechanisms to audit and modify stored permissions. Addition-
ally, mitigating risks associated with GUI interaction vulnerabilities will require col-
laboration with desktop environment developers to enforce stricter access controls for
automation tools.

In conclusion, ICFS represents a significant step toward simplifying advanced ac-
cess control mechanisms by aligning security enforcement with user intuition. While its
current iteration exposes inherent challenges in balancing dynamic policy enforcement
with system complexity, the framework provides a foundational model for future inno-
vations in user-driven cybersecurity solutions. By addressing the outlined limitations,
subsequent development could further bridge the divide between academic security
paradigms and practical, user-friendly implementation.
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Appendix A: source code

Source code of ICFS can be found on the CD attached to this thesis, and on the inter-
net. It can be accessed on https://git.umbrasolis.de/fedir/ICFS. All necessary
installation and usage information is provided in the README.md file. Description of
source code parts is available in CONTENTS.md file.
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