COMENIUS UNIVERSITY IN BRATISLAVA
FACULTY OF MATHEMATICS, PHYSICS AND INFORMATICS

FILESYSTEM WITH INTERACTIVE ACCESS
CONTROL FOR LINUX
BACHELOR THESIS

2024
FEDIR KOVALOV

Draft

COMENIUS UNIVERSITY IN BRATISLAVA
FACULTY OF MATHEMATICS, PHYSICS AND INFORMATICS

FILESYSTEM WITH INTERACTIVE ACCESS
CONTROL FOR LINUX
BACHELOR THESIS

Study Programme: Computer Science

Field of Study: Computer Science
Department: Department of Computer Science
Supervisor: RNDr. Jaroslav Janacek, PhD.

Bratislava, 2024

Fedir Kovalov

Draft

94283494

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

ZADANIE ZAVERECNEJ PRACE

Meno a priezvisko Studenta: Fedir Kovalov

Studijny program: informatika (Jednoodborové stidium, bakalarsky I. st., denné
forma)

Studijny odbor: informatika

Typ zaverecnej prace: bakalarska

Jazyk zaverecnej prace: anglicky

Sekundarny jazyk: slovensky

Nazov: Filesystem with Interactive Access Control for Linux

Anotacia:

Ciel’:

Vedici:
Katedra:

Suborovy systém s interaktivnym riadenim pristupu pre Linux

Tradi¢né mechanizmy riadenia pristupu v operaénych systémoch povoluji
rovnakll Uroven pristupu vSetkym procesom beziacim v mene toho istého
pouzivatel'a. Toto typicky umoZziuje Skodlivym procesom Ccitat’ a/alebo
modifikovat’ vSetky udaje pristupné pouzivatelovi, ktory spustil zranitelnu
aplikaciu. D4 sa to riesit’ pouZitim réznych mechanizmov povinného riadenia
pristupu, no tieto st ¢asto narocné na konfiguraciu a zriedkavo sa pouzivaju
v beznych scendroch orientovanych na pouzivatela. Tato praca sa zameriava
na navrh a implementaciu vrstvy stborového systému, ktora rozhodnutie
povolit’ alebo zakazat pristup k objektu suborového systému konkrétnym
procesom deleguje na pouZzivatel’a.

- analyzovat’ problém a navrhnut rieSenie
- implementovat’ rieSenie vyuzitim FUSE
- otestovat’ rieSenie a demonStrovat’ jeho prinos

RNDr. Jaroslav Janacek, PhD.
FMFILKI - Katedra informatiky

Veduci katedry: prof. RNDr. Martin Skoviera, PhD.
Datum zadania: 31.10.2024

Datum schvalenia: 31.10.2024 doc. RNDr. Dana Pardubska, CSc.

Student

garant $tudijného programu

veduci prace

94283494

Comenius University Bratislava
Faculty of Mathematics, Physics and Informatics

THESIS ASSIGNMENT
Name and Surname: Fedir Kovalov
Study programme: Computer Science (Single degree study, bachelor 1. deg., full
time form)
Field of Study: Computer Science
Type of Thesis: Bachelor’s thesis
Language of Thesis: English
Secondary language: Slovak
Title: Filesystem with Interactive Access Control for Linux

Annotation:

Aim:

Supervisor:
Department:
Head of
department:

Assigned:

Approved:

Traditional access control mechanisms in operating systems allow the same
level of access to all processes running on behalf of the same user. This typically
enables malicious processes to read and/or modify all data accessible to the
user running a vulnerable application. It can be dealt using various mandatory
access control mechanisms, but these are often complicated to configure and are
rarely used in common user oriented scenarios. This thesis focuses on design
and implementation of a filesystem layer which delegates the decision to allow
or deny access to a filesystem object by a specific process to the user.

- analyse the problem and design a solution
- implement the solution using the FUSE framework
- test the solution and demonstrate its benefits

RNDr. Jaroslav Janacek, PhD.

FMFIL.KI - Department of Computer Science
prof. RNDr. Martin Skoviera, PhD.

31.10.2024

31.10.2024 doc. RNDr. Dana Pardubska, CSc.

Guarantor of Study Programme

Student

Supervisor

Abstrakt

Tradi¢né mechanizmy riadenia pristupu v operaénych systémoch povoluju rovnaku
uroven pristupu vSetkym procesom beZiacim v mene toho istého pouzivatela. Toto typ-
icky umoznuje skodlivym procesom ¢itat a/alebo modifikovat vSetky tdaje pristupné
pouzivatelovi, ktory spustil zraniteInu aplikdciu. D4 sa to riesit pouzitim réznych
mechanizmov povinného riadenia pristupu, no tieto st ¢asto naro¢né na konfiguraciu a
zriedkavo sa pouzivaji v beZnych scenaroch orientovanych na pouzivatela. Tato praca
sa zameriava na navrh a implementaciu vrstvy suborového systému, ktora rozhodnu-
tie povolit alebo zakazat pristup k objektu stiborového systému konkrétnym procesom

deleguje na pouzivatela.

Krluacové slova: riadenie pristupu, suborové systémy, FUSE, sthlas pouzivatela, na-
jmengie opravnenie, opravnenia, udelovanie opravneni, riadenie pristupu riadené pouzi-

vatelom.

Abstract

Traditional access control mechanisms in operating systems allow the same level of
access to all processes running on behalf of the same user. This typically enables
malicious processes to read and/or modify all data accessible to the user running a
vulnerable application. It can be dealt using various mandatory access control mecha-
nisms, but these are often complicated to configure and are rarely used in common user
oriented scenarios. This thesis focuses on design and implementation of a filesystem
layer which delegates the decision to allow or deny access to a filesystem object by a

specific process to the user.

Keywords: access control, filesystems, FUSE, user consent, least-privilege, permis-

sions, permission granting, user-driven access control.

Contents

Introduction

1 Motivation
1.1 Limitations of Traditional UNIX File Access Control Policies

1.2 Current solutions

2 Interactively Controlled File System
2.1 Features
2.1.1 Access Control Model

3 Implementation

4 Evaluation

4.1 Known Issues

Conclusion

vii

Draft

List of Figures

X

Draft

List of Tables

X1

Draft

Introduction

In modern operating systems, access control mechanisms are fundamental to ensuring
the confidentiality, integrity, and availability of system resources. These mechanisms
dictate how users and processes interact with system objects such as files, directories,
and devices. However, traditional access control models, such as the discretionary
access control (DAC) employed by Linux and other Unix-like systems, operate under
the assumption that all processes running under the same user account should have
the same level of access to system resources. While this simplifies user management
and permissions, it can introduce significant security risks.

The problem arises when a process or application running under a user’s account
becomes compromised. In such cases, the malicious code or exploit can leverage the
user’s existing permissions to access or modify sensitive data, potentially leading to
data breaches or other security incidents. This fundamental limitation of traditional
access control mechanisms underscores the need for a more granular and dynamic
approach to file system access control.

Over the years, various mandatory access control (MAC) mechanisms, such as
SELinux (Security-Enhanced Linux) and AppArmor have been developed to address
these limitations. These systems enforce access control policies at a more granular
level, often based on labels or rules defined by system administrators. While these
mechanisms are effective in certain scenarios, they are generally complex to configure
and require significant expertise to maintain. As a result, they are rarely adopted in
common user-oriented environments, where simplicity and ease of use are paramount.

In this thesis we introduce our approach to file system access control that empowers
users to make real-time decisions about which processes or applications should have
access to specific file system objects. By integrating an interactive decision-making
layer into the file system, this solution aims to bridge the gap between the security
benefits of MAC mechanisms and the simplicity required for widespread adoption.
The proposed system delegates access control decisions to the user, enabling them to
grant or deny access to individual processes or applications on a per-object basis. This
approach not only enhances security but also maintains the flexibility and usability
that are critical for user-oriented systems.

The rest of this thesis is organised as follows: Chapter 1 provides a review of existing

2 Introduction

access control mechanisms and their limitations. Chapter 2 outlines the design objec-
tives, architecture, and the interactive component of the proposed file system layer.
Chapter 3 describes the implementation process, including the tools and techniques
used to develop the system. Chapter 4 presents experimental results and evaluates the
performance and security benefits of the proposed solution. Finally, in Chapter 5 we
describe some limitations of the proposed solution, and discuss the potential for further

development.

Chapter 1

Motivation

1.1 Limitations of Traditional UNIX File Access Con-

trol Policies

By default, UNIX-like operating systems only provide simplistic Discretionary Access
Control (DAC) policies whose objects are files, and subjects are users.

The policy used by traditional UNIX systems is based on the concepts of file owner,
group of a file, and others. For each file, the access rights for these three categories
can be specified independently using a so-called access mode. The access mode is a
bitmask which specifies whether the file owner, the group of the file, and others have
read, write, or execute permissions.

Each process has it’s own Effective User ID (EUID), that identifies the user that
initiated it. When a process tries to access a file, the kernel checks the access mode of

the file, and grants or denies access based on the following rules:

e If the process’s effective user ID matches the file owner, the file owner’s access

mode is used.

e Otherwise if the process belongs to the group of the file, then the group’s access

mode is used.

e If neither condition holds, others’ access modes are applied.

The access mode is stored in the file’s inode, and is set by a process with the file
owner’s user ID using the chmod system call. The file owner is the user who created
the file, and can be changed using the chown system call by a process with the effective
user ID of a superuser. The group of a file is set to the group of the file owner when
the file is created, and can also be changed using the chown system call by a process

with the effective user ID of a superuser.

4 CHAPTER 1. MOTIVATION

Later, a feature called Access Control Lists (ACL) was introduced to many UNIX-
like operating systems and eventually included in the POSIX standard. ACLs provide
the ability to control file permissions of specific users, rather than just owner, group
and others. Similar to the classic UNIX access control policies, only processes running
with the user ID that matches the owner user ID of a file can change its ACLs.

Although this kind of access control solutions has been proven to be helpful in multi-
user environments, it is obviously insufficient to protect against an attack performed
by a process initiated by the same user.

The fundamental weakness of the traditional UNIX DAC model, and even its ex-
tension with ACLs, lies in its reliance on user identity as the primary access control
decision point. While effective at separating access between different users, it provides
little to no protection within a user’s own account. This deficiency is particularly prob-
lematic in modern computing environments where a user’s processes are increasingly
complex and often involve downloaded or third-party code.

This vulnerability stems from the “all or nothing” nature of user ownership. A
process running with user’s EUID inherits all of user’s privileges, treating all files
they own as equally accessible. There’s no way to restrict a specific process, even
one initiated by the user themselves, from accessing certain files or performing certain
operations.

These limitations highlight the need for more sophisticated access control mecha-
nisms that go beyond simple user identity and consider the context and trustworthiness
of the process attempting to access a resource. Mandatory Access Control (MAC) and
sandboxing technologies are emerging solutions aiming to address these shortcomings
by introducing finer-grained control over process privileges and resource access. The

following sections will explore these alternatives in detail.

1.2 Current solutions

Many Linux OS ship with additional Mandatory Access Control (MAC) mechanisms
(e.g. AppArmor, SELinux) that allow to restrict the usage of file system objects by
specific programs. Unfortunately, these mechanisms require a considerable amount of
knowledge and effort for the user to manage them, which makes them infeasible for
most single-user environments.

In Lovyagin et. al. 2020 [6] authors propose and implement a so called FGACFS
file system that extends traditional UNIX access control policies with far more sophis-
ticated and granular system. This also includes the ability to restrict access on per-
program basis. However, due to the sheer variety of options and configurable parame-

ters, this approach still falls short when it comes to ease of use and user-friendliness.

1.2. CURRENT SOLUTIONS)

Additionally, all the above solutions share a significant drawback: they necessitate
user intervention to secure files, even when those files are never accessed. For instance,
if access to a file system object is denied (allowed) for all programs by default and only
allowed (denied) for specific ones, granting (revoking) access for new programs requires
users to modify access permissions proactively.

While some solutions offer automatic inheritance or assignment of rules and access
control policies, they still need extensive manual configuration. Even if inheriting all
access permissions from a default value were practical, installing new programs would
always necessitate updating rules to adhere to the principle of least privilege.

Another problem of these solutions, is that their policies are granted forever and
the user is never informed about the actual usage of those permissions, which makes
them more vulnerable to attacks by proxy. For example, if the program cat is al-
lowed to read contents of the file “/secrets/text.txt, malicious program may execute

cat “/secrets/text.txt > “/stolen-text.txt command at any time, without any

warning and regardless of whether the malicious program has access to “/secrets/text.

or “/stolen-text.txt. If the user only granted read permissions to cat when they

are actually using the program themselves, such attack could likely be avoided.

txt

Another solution to consider, is using containerised software distribution, like Flatpak|2],

Snapcraft[4] or AppImage[l]. Those types of package distribution systems either use
Linux feature called namespaces or leverage MAC mechanisms to isolate software from
the rest of the system. Aside from solving common dependency management problems,
this approach also allows some capabilities of the distributed software to be restricted,
like access to camera, hardware devices, but, most importantly, file system objects.

However, because the developer of the distributed software is responsible for defining
the permissions that his own program needs, it often leads to programs having excessive
privileges after installation! without any notification of the user.

Additionally, it is a responsibility of the software developer to choose the distribu-
tion method, and despite containerised software getting more and more popular, there
are still plenty of programs that can only be installed using traditional methods, that
do not offer any mechanisms for restricting file system access.

Furthermore, some software is impractical to sandbox. For example, because of
the FlatPak’s design, CLI software has to be run with flatpak run command and
has to use often long and hard-to-remember package names, which may appear rather
cumbersome for most users.

Another, similar solution can be found in the Android operating system. Here, all

apps are sandboxed by default. But Android does way more than Flatpak: it adds an

Tt is important to mention, that although this flaw remains unmitigated, the analysis made by
Dunlap et al. 2022 [5] shows that most package maintainers actively attempt to define least-privilege

application policies.

6 CHAPTER 1. MOTIVATION

interactive component to the access control.

When an app need permission to access the shared storage (part of the filesystem,
common to all applications), an overlay is displayed, prompting the user for their
decision on whether to allow or deny access to user’s files. Notably, this approach
avoids the problem of granting permissions up front, and always informs the user
about the permissions that the app wishes to have.

Furthermore, starting in Android 11, whenever an app requests a permission related
to location, microphone, or camera, the user-facing permissions dialogue contains an
option called "Only this time". If the user selects this option in the dialogue, the app
is granted a temporary one-time permission.|3]

Unfortunately, Android access control system is specific to Android. Also, it inherits
the already mentioned drawbacks of containerisation, and only works through special
API, thus requiring the software to be redesigned to work with such an access control
system.

Finally, in McIntosh et al. 2021 [7| authors propose and implement software called
Ranacco, which attempts to analyse various system environmental factors (e.g. latest
mouse and keyboard activity) and file system operations to detect potentially malicious
actions made by processes, in which case it delegates access control decision to the user.
This approach avoids the shortcomings of other possible solutions, while remaining
easy-to-use. Although this system is more advanced than the one we propose in this
thesis, not only is it exclusive to Windows, but it also remains unavailable for the
general public.

The key issues with existent solutions, that our the system proposed in this thesis

will try to address are as follows:

e Not all solutions assume processes to be malicious until proven (confirmed by
the user to be) safe. Quite often access control permissions are either predefined,

inferred or assumed.

e Some solutions can only enforce access policies on software that is distributed in
a special way. This leaves the file system just as unprotected against all other

software.

e Most solutions require passive action from the user besides initial installation (e.g.
you have to reconfigure policies all the time). This adds further inconvenience to

using such systems.

e Most solutions grant permissions forever, which significantly increases attack sur-

face. Specifically, this opens up possibilities for attacks by proxy.

e Majority of solutions focus on preventing unwanted access by other users, which

makes it unsuitable for single-user environments.

1.2. CURRENT SOLUTIONS 7

e Solutions are either overly complex and not user-friendly, or too simplistic to
provide adequate granularity of permissions. This either leads to slower adoption

of such systems, or makes them insufficient at protecting user data.

CHAPTER 1. MOTIVATION

Chapter 2
Interactively Controlled File System

In this section we present the solution developed as a part of this thesis, named Inter-
actively Controlled File System (or ICFS for short).

2.1 Features

ICFS is a filesystem layer that gives user direct command over its access control.
Instead of relying on static policies or rules, it prompts the user for the access control
decision via graphical interface. When a process tries to open a file, an overlay is
displayed, and three options are given: to deny, temporarily allow, or forever allow
access to a file.

It is user-friendly and trivially easy to use. It does not introduce any new ter-
minology or complex access control management strategies. The graphical interface
is intuitive and self-explanatory. ICFS is configured on the fly: as programs request
access, the user’s decisions are recorded and later reused. There is no need for any
configuration besides installation and choosing a directory to control. It operates on
the level of individual processes and files, ensuring high granularity.

It is backwards compatible: ICFS overrides the regular system call interface using
FUSE framework, which means that any software that wishes to use the files ICFS
protects has to respect it’s policies. Its interactivity combined with the ability to only
grant permissions for the lifetime of a specific process makes proxy attacks very difficult

to go unnoticed.

2.1.1 Access Control Model

As promised, the access control model of ICFS is trivially simple. It features processes
as it’s subjects, and files as objects. Whenever a process attempts to access a filesystem

object, a dialogue is displayed with three options:

10 CHAPTER 2. INTERACTIVELY CONTROLLED FILE SYSTEM

e Allow, that will allow the access to the filesystem object for this process and any

other process that is started with the same executable.

o Allow this time, that will allow the access to the filesystem object for the runtime

of the requesting process.

e Deny, that will deny all access to the filesystem object.

Chapter 3
Implementation

This chapter describes the software design and architecture, and the way that they
help to solve the problem. Importantly, the design elements must have at least some

justification in this section.

11

12

CHAPTER 3. IMPLEMENTATION

Chapter 4
Evaluation

In this chapter presents the method of evaluating the solution is presented, and the
found qualities of the solution are discussed.

Specifically this includes:
e Does the solution actually solve the problem?”

e Interoperability with other software: does using this fs break other programs,
like whether it interferes with programs using auxiliary files, usability of terminal

programs (grep is a particularly nasty one for this specific project).
e Performance and overhead.

e Security considerations.

4.1 Known Issues

This section outlines the known issues with the solution and evaluates their relevan-

cy/severity.

13

14

CHAPTER 4. EVALUATION

Conclusion

In conclusion, the overall value and benefits of the solution is discussed(reiterated :)).

15

16 Conclusion

Hel(]

Bibliography

[1] Appimage | linux apps that run anywhere.

[2] Flatpak - the future of application distribution on linux.
[3] Permissions updates in android 11.

[4] Snapcraft - snaps are universal linux packages.

[5] Trevor Dunlap, William Enck, and Bradley Reaves. A study of application sandbox
policies in linux. In Proceedings of the 27th ACM on Symposium on Access Control
Models and Technologies, SACMAT 22, page 19-30, New York, NY, USA, 2022.

Association for Computing Machinery.

[6] Nikita Yu. Lovyagin, George A. Chernishev, Kirill K. Smirnov, and Roman Yu.
Dayneko. Fgacfs: A fine-grained access control for *nix userspace file system. Com-
puters € Security, 88:101632, 2020.

[7] Timothy McIntosh, A.S.M. Kayes, Yi-Ping Phoebe Chen, Alex Ng, and Paul Wat-
ters. Dynamic user-centric access control for detection of ransomware attacks.
Computers € Security, 111:102461, 2021.

17

	Introduction
	Motivation
	Limitations of Traditional UNIX File Access Control Policies
	Current solutions

	Interactively Controlled File System
	Features
	Access Control Model

	Implementation
	Evaluation
	Known Issues

	Conclusion

