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Abstrakt

Tradičné mechanizmy riadenia prístupu v operačných systémoch povoľujú rovnakú
úroveň prístupu všetkým procesom bežiacim v mene toho istého používateľa. Toto typ-
icky umožňuje škodlivým procesom čítať a/alebo modifikovať všetky údaje prístupné
používateľovi, ktorý spustil zraniteľnú aplikáciu. Dá sa to riešiť použitím rôznych
mechanizmov povinného riadenia prístupu, no tieto sú často náročné na konfiguráciu a
zriedkavo sa používajú v bežných scenároch orientovaných na používateľa. Táto práca
sa zameriava na návrh a implementáciu vrstvy súborového systému, ktorá rozhodnu-
tie povoliť alebo zakázať prístup k objektu súborového systému konkrétnym procesom
deleguje na používateľa.

Kľúčové slová: riadenie prístupu, súborové systémy, FUSE, súhlas používateľa, na-
jmenšie oprávnenie, oprávnenia, udeľovanie oprávnení, riadenie prístupu riadené použí-
vateľom.
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Abstract

Traditional access control mechanisms in operating systems allow the same level of
access to all processes running on behalf of the same user. This typically enables
malicious processes to read and/or modify all data accessible to the user running a
vulnerable application. It can be dealt using various mandatory access control mecha-
nisms, but these are often complicated to configure and are rarely used in common user
oriented scenarios. This thesis focuses on design and implementation of a filesystem
layer which delegates the decision to allow or deny access to a filesystem object by a
specific process to the user.

Keywords: access control, filesystems, FUSE, user consent, least-privilege, permis-
sions, permission granting, user-driven access control.
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Introduction

In modern operating systems, access control mechanisms are fundamental to ensuring
the confidentiality, integrity, and availability of system resources. These mechanisms
dictate how users and processes interact with system objects such as files, directories,
and devices. However, traditional access control models, such as the discretionary
access control (DAC) employed by Linux and other Unix-like systems, operate under
the assumption that all processes running under the same user account should have
the same level of access to system resources. While this simplifies user management
and permissions, it can introduce significant security risks.

The problem arises when a process or application running under a user’s account
becomes compromised. In such cases, the malicious code or exploit can leverage the
user’s existing permissions to access or modify sensitive data, potentially leading to
data breaches or other security incidents. This fundamental limitation of traditional
access control mechanisms underscores the need for a more granular and dynamic
approach to file system access control.

Over the years, various mandatory access control (MAC) mechanisms, such as
SELinux (Security-Enhanced Linux) and AppArmor have been developed to address
these limitations. These systems enforce access control policies at a more granular
level, often based on labels or rules defined by system administrators. While these
mechanisms are effective in certain scenarios, they are generally complex to configure
and require significant expertise to maintain. As a result, they are rarely adopted in
common user-oriented environments, where simplicity and ease of use are paramount.

In this thesis we introduce our approach to file system access control that empowers
users to make real-time decisions about which processes or applications should have
access to specific file system objects. By integrating an interactive decision-making
layer into the file system, this solution aims to bridge the gap between the security
benefits of MAC mechanisms and the simplicity required for widespread adoption.
The proposed system delegates access control decisions to the user, enabling them to
grant or deny access to individual processes or applications on a per-object basis. This
approach not only enhances security but also maintains the flexibility and usability
that are critical for user-oriented systems.

The rest of this thesis is organised as follows: Chapter 1 and chapter 2 provides a

3
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4 Introduction

review of existing access control mechanisms and their limitations. Chapter 3 outlines
the design objectives, architecture, and the interactive component of the proposed file
system layer. Chapter 4 describes the implementation process, including the tools and
techniques used to develop the system. Finally, in chapter 5 we present experimental
results, evaluate the performance, security benefits and limitations of the proposed
solution, and discuss the potential for further development.
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Chapter 1

Filesystem access control on Linux

1.1 Traditional UNIX Filesystem Access Control Poli-

cies

By default, UNIX-like operating systems only provide simplistic Discretionary Access
Control (DAC) policies whose objects are files, and subjects are users.

The policy used by traditional UNIX systems is based on the concepts of file owner,
group of a file, and others. For each file, the access rights for these three categories
can be specified independently using a so-called access mode. The access mode is a
bitmask which specifies whether the file owner, the group of the file, and others have
read, write, or execute permissions.

Each process has it’s own Effective User ID (EUID), that identifies the user that
initiated it. When a process tries to access a file, the kernel checks the access mode of
the file, and grants or denies access based on the following rules:

• If the process’s effective user ID matches the file owner, the file owner’s access
mode is used.

• Otherwise if the process belongs to the group of the file, then the group’s access
mode is used.

• If neither condition holds, others’ access modes are applied.

The access mode is stored in the file’s inode, and is set by a process with the file
owner’s user ID using the chmod system call. The file owner is the user who created
the file, and can be changed using the chown system call by a process with the effective
user ID of a superuser. The group of a file is set to the group of the file owner when
the file is created, and can also be changed using the chown system call by a process
with the effective user ID of a superuser.

5
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Later, a feature called Access Control Lists (ACL) was introduced to many UNIX-
like operating systems and eventually included in the POSIX standard. ACLs provide
the ability to control file permissions of specific users, rather than just owner, group
and others. Similar to the classic UNIX access control policies, only processes running
with the user ID that matches the owner user ID of a file can change its ACLs.

1.2 The Inherent Flaw of User-Centric Access Con-

trol

Although this kind of access control solutions has been proven to be helpful in multi-
user environments, it is obviously insufficient to protect against an attack performed
by a process initiated by the same user.

The fundamental weakness of the traditional UNIX DAC model, and even its ex-
tension with ACLs, lies in its reliance on user identity as the primary access control
decision point. While effective at separating access between different users, it provides
little to no protection within a user’s own account. This deficiency is particularly prob-
lematic in modern computing environments where a user’s processes are increasingly
complex and often involve downloaded or third-party code.

This vulnerability stems from the “all or nothing” nature of user ownership. A
process running with user’s EUID inherits all of user’s privileges, treating all files
they own as equally accessible. There’s no way to restrict a specific process, even
one initiated by the user themselves, from accessing certain files or performing certain
operations.

These limitations highlight the need for more sophisticated access control mecha-
nisms that go beyond simple user identity and consider the context and trustworthiness
of the process attempting to access a resource. Mandatory Access Control (MAC) and
sandboxing technologies are emerging solutions aiming to address these shortcomings
by introducing finer-grained control over process privileges and resource access. The
following chapter will explore these alternatives in detail.
Draft note: Talk more about the threat model?
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Chapter 2

Current solutions, and why they won’t
suffice

2.1 MAC mechanisms

Many Linux OS ship with additional Mandatory Access Control (MAC) mechanisms
(e.g. AppArmor, SELinux) that allow to restrict the usage of file system objects by
specific programs.
Draft note: Explain how exactly can they do that? (It seems irrelevant to the
overall topic)

Unfortunately, these mechanisms require a considerable amount of knowledge and
effort for the user to manage them, which makes them infeasible for most single-user
environments.

2.2 FGACFS

In Lovyagin et. al. 2020 [1] authors propose and implement a so called FGACFS file sys-
tem that extends traditional UNIX access control policies with far more sophisticated
and granular system. This also includes the ability to restrict access on per-program
basis. However, due to the sheer variety of options and configurable parameters, this
approach still falls short when it comes to ease of use and user-friendliness.

Additionally, all the above solutions share a significant drawback: they necessitate
user intervention to secure files, even when those files are never accessed. For instance,
if access to a file system object is denied (allowed) for all programs by default and only
allowed (denied) for specific ones, granting (revoking) access for new programs requires
users to modify access permissions proactively.

While some solutions offer automatic inheritance or assignment of rules and access
control policies, they still need extensive manual configuration. Even if inheriting all

7
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8 CHAPTER 2. CURRENT SOLUTIONS, AND WHY THEY WON’T SUFFICE

access permissions from a default value were practical, installing new programs would
always necessitate updating rules to adhere to the principle of least privilege.

Another problem of these solutions, is that their policies are granted forever and
the user is never informed about the actual usage of those permissions, which makes
them more vulnerable to attacks by proxy. For example, if the program cat is al-
lowed to read contents of the file ~/secrets/text.txt, malicious program may execute
cat ~/secrets/text.txt > ~/stolen-text.txt command at any time, without any
warning and regardless of whether the malicious program has access to ~/secrets/text.txt
or ~/stolen-text.txt. If the user only granted read permissions to cat when they
are actually using the program themselves, such attack could likely be avoided.

2.3 Containerisation

Another solution to consider, is using containerised software distribution, like Flatpak
[2], Snapcraft [3] or AppImage [4]. Those types of package distribution systems either
use Linux feature called namespaces or leverage MAC mechanisms to isolate software
from the rest of the system. Aside from solving common dependency management
problems, this approach also allows some capabilities of the distributed software to be
restricted, like access to camera, hardware devices, but, most importantly, file system
objects.

However, because the developer of the distributed software is responsible for defining
the permissions that his own program needs, it often leads to programs having excessive
privileges after installation1 without any notification of the user.

Additionally, it is a responsibility of the software developer to choose the distribu-
tion method, and despite containerised software getting more and more popular, there
are still plenty of programs that can only be installed using traditional methods, that
do not offer any mechanisms for restricting file system access.

Furthermore, some software is impractical to sandbox. For example, because of
the FlatPak’s design, CLI software has to be run with flatpak run command and
has to use often long and hard-to-remember package names, which may appear rather
cumbersome for most users.

2.4 Android

Another, similar solution can be found in the Android operating system. Here, all
apps are sandboxed by default. But Android does way more than Flatpak: it adds an

1It is important to mention, that although this flaw remains unmitigated, the analysis made by
Dunlap et al. 2022 [5] shows that most package maintainers actively attempt to define least-privilege
application policies.
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interactive component to the access control.

When an app need permission to access the shared storage (part of the filesystem,
common to all applications), an overlay is displayed, prompting the user for their
decision on whether to allow or deny access to user’s files. Notably, this approach
avoids the problem of granting permissions up front, and always informs the user
about the permissions that the app wishes to have.

(a) (b)

Figure 2.1: Permissions dialogues in Android 14: The location access permission di-
alogue (a) shows three options: ”While using the app“, ”Only this time“ and ”Don’t
allow“. The media access permission dialogue also has three, but different options:
”Allow limited access“, ”Allow all” and ”Don’t allow“

Furthermore, starting in Android 11, whenever an app requests a permission related
to location, microphone, or camera, the user-facing permissions dialogue contains an
option called ”Only this time“. If the user selects this option in the dialogue, the app
is granted a temporary one-time permission.[6]

Unfortunately, Android access control system is specific to Android. Also, it inherits
the already mentioned drawbacks of containerisation, and only works through special
API, thus requiring the software to be redesigned to work with such an access control
system.
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2.5 Ranacco

Finally, in McIntosh et al. 2021 [7] authors propose and implement software called
Ranacco, which attempts to analyse various system environmental factors (e.g. latest
mouse and keyboard activity) and file system operations to detect potentially malicious
actions made by processes, in which case it delegates access control decision to the user.
This approach avoids the shortcomings of other possible solutions, while remaining
easy-to-use. Although this system is more advanced than the one we propose in this
thesis, not only is it exclusive to Windows, but it also remains unavailable for the
general public.

2.6 Requirements for the solution

Draft note: Negate the statements? (state what we want, not what we don’t
want)

The key issues with existent solutions, that our the system proposed in this thesis
will try to address are as follows:

• Not all solutions assume processes to be malicious until proven (confirmed by
the user to be) safe. Quite often access control permissions are either predefined,
inferred or assumed.

• Some solutions can only enforce access policies on software that is distributed in
a special way. This leaves the file system just as unprotected against all other
software.

• Most solutions require passive action from the user besides initial installation (e.g.
you have to reconfigure policies all the time). This adds further inconvenience to
using such systems.

• Most solutions grant permissions forever, which significantly increases attack sur-
face. Specifically, this opens up possibilities for attacks by proxy.

• Majority of solutions focus on preventing unwanted access by other users, which
makes it unsuitable for single-user environments.

• Solutions are either overly complex and not user-friendly, or too simplistic to
provide adequate granularity of permissions. This either leads to slower adoption
of such systems, or makes them insufficient at protecting user data.
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Chapter 3

Interactively Controlled File System

This chapter presents the solution developed for this thesis, the Interactively Controlled
File System (ICFS), a user-centric filesystem layer designed to enhance access control
through real-time user input.

ICFS provides users with direct control over filesystem access decisions. Unlike
traditional systems relying on static policies, ICFS dynamically prompts users for au-
thorization via a graphical interface, ensuring decisions align with immediate contextual
needs.

Key Features:

• User-Friendly Design: Requires no prior configuration or specialized knowledge.
The intuitive interface eliminates complex terminology, enabling seamless inter-
action.

• Dynamic Policy Enforcement: Permissions are established on-demand and stored
for future reference, minimizing repetitive prompts.

• Granular Control: Policies apply at the process-file level, with options to gener-
alize rules for broader categories, reducing user fatigue.

• Backward Compatibility: Implemented via the FUSE framework, ICFS intercepts
system calls without altering existing software workflows.

3.1 Usage

To deploy ICFS, the user selects a target directory and executes:

icfs path/to/directory

This mounts ICFS over the specified directory, enforcing access control for all sub-
sequent interactions. While the name includes "File System," ICFS operates as a

11
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12 CHAPTER 3. INTERACTIVELY CONTROLLED FILE SYSTEM

filesystem layer , intermediating between the physical filesystem (e.g., ext4) and user
processes. It preserves the appearance of the original filesystem while enforcing its own
access logic (implementation details in section 4.1).

3.2 Access Control Model

ICFS adopts a straightforward access control model:

• Subjects: Processes requesting access.

• Objects: Files or directories undergoing access attempts.

When a process requests access (e.g., open, modify, delete) to a file without pre-
existing permissions, ICFS generates an access dialogue (see Figure 3.1).

Figure 3.1: ICFS Access Dialogue: Displays the process executable name, PID, and
target file path. Users may adjust the file scope, toggle permanent permissions, or
grant/deny access.

The dialogue contains three functional elements:

• Access Grant Buttons.

– Yes Button : Grants temporary access to the requested file to the requesting
process only. If the user selects this option, the process is allowed to proceed
with the requested access (e.g., read, write).
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– No Button : Denies access to the file for the current process. The filesys-
tem returns an error (e.g., EACCES) to the requesting process, mimicking
standard permission denial behavior.

• Permanent Permission Checkbox: A toggle labeled "Permanent" allows the user
to persist the access decision beyond the current process. If checked , the permis-
sion rule (allow/deny) is stored in a local configuration database. The rule then
applies to all future access attempts by processes (and any of their child processes)
with an executable filename matching the requesting process. If unchecked , the
decision applies only to the requesting process and it’s child processes. That
is, the process can actually access the file multiple times with this permission.
Permissions granted with this box toggled on (off) will from now on be referred
to as ”permanent“ (”temporary“).

• File Path Substitution Field: A text input field pre-filled with the absolute path
of the requested file. Users may edit this field to modify scope of the permission
(e.g., granting access to all files in the parent directory instead of a single file).

Behaviour changes slightly, if the operation is performed on a directory or a symbolic
link: If the file is a directory, only changing the access mode and removal require
permission from the user. With symbolic links, following is always permitted. If a
process attempts to create a file, it is automatically granted permanent access to the
file it has created.

This model addresses five key limitations of traditional systems:

• Reactive Configuration: No upfront setup required; permissions emerge organi-
cally.

• Temporary Permissions: Users may limit access to a single instance.

• Scalable Granularity: Policies adapt from specific files to broader categories.

The remaining two criteria are analysed in the next section.

3.3 Least Privilege vs. Usability

Balancing the principle of least privilege with usability posed the greatest design chal-
lenge. Strict enforcement—prompting for every access attempt—would minimize risk
but overwhelm users.

To reduce friction, ICFS needs to keep the number of dialogues to minimum. This
necessitates avoiding prompts for actions likely to be safe. However, we still aim to
avoid granting excessive privileges by default.
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When ICFS is initially started, no user decisions are known, and thus no processes
have access to protected files. Each new access attempt triggers a privilege escalation
request via the access dialogue.

Applying this rule strictly to all filesystem objects – including directories and sym-
bolic links – with intelligent user decisions, would perfectly adhere to the principle of
least privilege.

However, such strictness would render ICFS excessively cumbersome to use. To
mitigate this, the rule has been relaxed to compromise user data as little as possible.

Firstly, Unlike POSIX, ICFS does not restrict directory visibility. While this ex-
poses file structures, directory names rarely contain sensitive data.

Second, processes are permitted to create files without restriction. This decision is
based on the observation that many programs create auxiliary and temporary files. For
instance, the pdfLaTeX compiler creates 21 files in the source directory for this thesis,
only 10 of which are human-editable; the remaining files are intermediary output of
the compiler. Requiring the user to grant permissions for all these files would more
than double the decision-making burden.

While this approach increases the potential for malicious processes to disrupt other
processes, the risk is considered lower than the burden of constantly prompted permis-
sion requests. We discuss these limitations in section 5.4 of chapter 5.

Thirdly, all access permissions apply to the child processes too. Since only the
parent process has control over starting its children, it is theoretically safe to presume
that non-malicious processes won’t spawn malicious child processes. Of course, this
presumption is not necessarily true in reality: programs contain a plethora of bugs
some of which might as well allow for arbitrary code execution, and thus starting of
unwanted programs as its children.

However, we decided that the burden caused by having to allow access to all its
children is way too high. For example, the Neovim text editor may spawn up to five
additional child processes that analyse the opened file, such as code linters, formatters
and debuggers. We discuss potential threats that relate to this rule in section 5.4 of
chapter 5.
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Chapter 4

Implementation

This chapter outlines the software design and architecture of ICFS, detailing how these
elements address the challenge of fine-grained access control. Subsequent sections in-
troduce the FUSE framework, methods for managing process-specific permissions, and
the architectural strategies employed to mitigate unauthorised filesystem access.

4.1 FUSE framework

To regulate filesystem operations, ICFS employs the FUSE (Filesystem in Userspace)
framework[8], which intercepts filesystem calls. FUSE enables the creation of custom
filesystems or layers in user space, offering flexibility and ease of implementation. It
provides an API for developers to define filesystem behavior. Once implemented (here-
after termed the FUSE application ), the system mounts the custom filesystem at a
specified location, substituting standard filesystem operations with methods defined
by the API.

ICFS implements this API in C using the libfuse3 library [9]. It initializes the FUSE
daemon via the fuse_main() function, which manages communication between the
kernel and the FUSE application. Rather than directly overriding system calls, FUSE
interacts with the kernel through /dev/fuse, a specialized device file that translates
filesystem requests into API method invocations using a dedicated protocol.

ICFS does not have a backing store (a separate filesystem that contains actual
data). Instead, it functions as a so-called passthrough filesystem, where system calls
are forwarded to the original filesystem, if access control policies allow them.

To enforce access restrictions, ICFS mounts directly over the target directory, inter-
cepting all access requests directed to it. As part of Linux’s Virtual Filesystem (VFS)
architecture, processes interacting with the protected directory are routed through
ICFS. However, ICFS retains direct access to the underlying files by opening the di-
rectory with the O_PATH flag before mount. Subsequent operations are executed us-
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ing "at"-suffixed system calls like openat(), performed directly at the file descriptor
level[10], which bypasses ICFS’s own layer.

4.2 Permission tables

To enforce an access control policy over time, filesystem needs to store user decisions
in an appropriate data structure. As described in section 3.2, ICFS can give out two
types of permissions: temporary and permanent. To accommodate this access control
model, ICFS implements two data structures: a temporary permissions table, and
a permanent permissions table, which we describe in detail in subsection 4.2.1 and
subsection 4.2.2 respectively.

To pass permissions to child processes, both tables use procfs. When a permission
check for the requesting process yields no results, recursive checks are performed on
parent processes by traversing the process tree.

4.2.1 Temporary permissions

To function, temporary permissions storage should contain all information needed to
identify the process, and associate the files to which the access is denied or allowed
with it. We chose to keep track of processes by comparing the following characteristics:

• Process ID: Number that uniquely identifies a process on Linux systems.

• Start time: The time the process started after system boot. The value is expressed
in clock ticks.

The process is considered the same if and only if both characteristics match.
At first, it might seem that factoring in start time is excessive. However, only using

PID as the only identifying property of a process is problematic: PID is only unique
among the currently running processes, not across the entire uptime of the system.
Processes can not only acquire the PID of another, already finished process, but also
attempt to request a specific PID. The start time is looked up in procfs by PID, which
is provided by libfuse.

The temporary permissions table consists of tuples (pid, starttime, allowed, denied),
where allowed and denied are sequences of files, that the process is allowed or denied
to access respectively.

In our implementation, entries are organised in a hash map, with PIDs as keys.
This provides quick lookup of entries much needed for filesystem operations. ICFS
uses the hash map implementation from the Convenient Containers library [11], that is
well-tested and has an intuitive interface, which has helped to simplify the development.
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One disadvantage of such a data structure, is that there isn’t any inherent mecha-
nism to remove entries that are no longer valid (e.g. permissions of a process that is
already finished).

Unfortunately, we haven’t found an efficient way to remove expired entries in the
temporary permission table. On Linux, a process can’t be notified of other processes’
end unless they are child processes or the tracking process is being run with superuser
permissions [12]. Hence, we had to resort to cleaning out expired entries using the
garbage collection technique: an independent thread periodically checks validity of
every entry in the table. If an entry is invalid, it is erased. We discuss its effect on
performance in the chapter 5.

4.2.2 Permanent permissions

Since permanent permissions are granted to all processes’ with the same executable,
only it’s filename is needed for identification. Since the permissions have to persist
after filesystem restart, the table needs to be stored on the disk. Hence, we chose
SQLite [13] as the backend for the permanent permissions table. It is well-tested and
lightweight, making it an ideal choice for a program like ICFS.

Due to specifics of relational databases, the permissions are stored as a relation
(executable, filename, type), where executable is the filename of the executable, filename

is a filename of the file that the permission targets and type is a boolean value indicating
whether the permission allows or prohibits access to the target file.

The database is stored in a file on the disk that the user chooses during startup.
The database file is protected from outside access using standard POSIX permissions:
during installation, a special user is created for ICFS, the owner UID of the executable
is set to the UID of the new user, and the setuid bit is set, to allow other users to
launch ICFS as a special user. On startup, database file is created as the special user,
and the access mode is set to prohibit access by any other user. After the database is
opened, UID of ICFS process (effective UID) is switched to the UID of the user (real
UID) that originally started it using the setuid system call. The database remains
open for the rest of the runtime of ICFS.

Unfortunately, in the current version of ICFS there is no way to edit the permanent
permission table. We address this limitation in more detail in chapter 5.
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Chapter 5

Evaluation

We tried to asses the quality of ICFS by the following metrics:

• Security : Does ICFS effectively mitigate unauthorized access by untrusted pro-
cesses?

• Usability : Does the interactive model reduce configuration burden while main-
taining user control?

• Performance : What is the overhead introduced by ICFS compared to native
filesystem operations?

• Compatibility : How well does ICFS integrate with existing workflows and soft-
ware (e.g., CLI tools, legacy applications)?

5.1 Test environment

For performance and usability tests, we used an HP Pavilion Laptop 15-cc563st with
an Intel® Core™ i7-7500U processor, a Western Digital WDS250G2B0B WD Blue 3D
NAND internal M.2 SATA SSD and 12 GB of DDR4 RAM, running Fedora Linux 42
(Workstation Edition) with Linux 6.14.5-300.fc42.x86_64 kernel, GNOME 48 desktop
environment with Wayland window session.

For additional compatibility tests, a KVM virtual machine running on the same
laptop was used. The OS on the virtual machine was Debian GNU/Linux 12 (book-
worm) x86_64 with 6.1.0-27-amd64 kernel, GNOME 43.9 with X11 windowing system.
The virtual machine was given 2 CPU cores and 2 GB of RAM.
Draft note: The rest of this chapter is very incomplete, and only contains a brief
and informal talk about the issues I am facing right now. This is not the actual
thesis-worthy text. All issues discussed were relevant as of 13.05.2025
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20 CHAPTER 5. EVALUATION

In this chapter presents the method of evaluating the solution is presented, and the
found qualities of the solution are discussed.

Specifically will include:

• „Does the solution actually solve the problem?”

• Interoperability with other software: does using this fs break other programs,
like whether it interferes with programs using auxiliary files, usability of terminal
programs (grep is a particularly nasty one for this specific project).

• Performance and overhead.

• Security considerations.

5.2 Usability

While it is difficult to put an objective score on the usability of any system, we decided
to measure the usability of ICFS by the amount

“does using this fs break other programs?”

Mostly - no. The biggest issue right now are (ironically) file trackers like tracker-miners.
Those are programs that scan the filesystem (e.g. to make file search more efficient).
The problem is that the current version of the software does not allow changing the
scope of permissions you are giving (e.g. you can’t just give permission to access the
entire filesystem). The solution would be to give an ability to adjust the scope inside
the permission dialogue. Everything on the “backend” side is ready for this change,
but... since I am using zenity it does not easily give me the ability to just add another
element to the dialog. Probably a custom dialogue program has to be written, or
multiple dialogues would have to be shown(e.g. standard one with Allow/Allow this
time/Deny with a “more options” button, and then a second zenity dialogue with more
detailed configurations) to solve the issue.

Now it does not.

“..like whether it interferes with programs using auxiliary files..”

No, this issue is solved. Because the programs that use such files are typically the
ones that create them, they automatically get the permissions to access them.

In fact, I am writing this thesis inside of a folder managed by ICFS, and even de-
spite TeX’s notorious love for auxiliary files it works just fine.
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“..usability of terminal programs (grep is a particularly nasty one for this specific
project)”

Yes, this still is an issue. The problem of grep is the same as with file trackers, so
I will skip it.

This is mostly solved in my experience. It wasn’t as annoying to use the terminal
programs as I initially expected.

As for terminal programs, I see these possible solutions improvements:

• Use SID and TTY to identify a shell session (like sudo does).

5.3 Performance

Performance of ICFS is terrible. Unfortunately, I was unable to make perf work with it
for some reason, so I don’t really know what is slowing operations down. So those are
my speculations for what may be the bottleneck. A lot of it is caused by it’s design.
For example, ICFS needs to look through procfs to get process creation time, and there
is no way of going around this it seems.

I managed to get the perf to work: it showed that almost all time was consumed
by libfuse, not my program. My code used something like 0.0001% of runtime on a
pretty heavy test. I am not quite sure what to do, since libfuse is already optimised
to smithereens. I guess I will just write how it is and not touch the performance ever
again.

5.4 Limitations
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Conclusion

Draft note: This chapter is very incomplete.

In conclusion, the overall value and benefits of the solution is discussed(reiterated
:)).
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